scholarly journals Effect of the Interfacial Thermal Resistance on the Effective Thermal Conductivity of Aluminum Matrix Composites

2016 ◽  
Vol 57 (5) ◽  
pp. 582-589 ◽  
Author(s):  
Kenjiro Sugio ◽  
Yong-Bum Choi ◽  
Gen Sasaki
2018 ◽  
Vol 941 ◽  
pp. 1939-1943
Author(s):  
Kenjiro Sugio ◽  
Keisuke Kono ◽  
Yong Bum Choi ◽  
Gen Sasaki

Interfacial thermal resistance in Al-SiC composites was evaluated by comparing the measured thermal conductivity and the calculated thermal conductivity. Al-20vol.%SiC composites changing SiC particle size, 3 μm to 30 μm, was fabricated by spark plasma sintering and heat treatment. Effective thermal conductivity was measured with the steady state thermal conductivity measuring device. Effective thermal conductivity was also calculated by using SEM image and the measured relative density. Comparing the measured thermal conductivity and the calculated thermal conductivity, interfacial thermal resistance in Al-SiC composites was evaluated as about 1.0x10-8 (m2K)/W.


2008 ◽  
Vol 75 (5) ◽  
Author(s):  
H. M. Yin ◽  
G. H. Paulino ◽  
W. G. Buttlar ◽  
L. Z. Sun

By means of a fundamental solution for a single inhomogeneity embedded in a functionally graded material matrix, a self-consistent model is proposed to investigate the effective thermal conductivity distribution in a functionally graded particulate nanocomposite. The “Kapitza thermal resistance” along the interface between a particle and the matrix is simulated with a perfect interface but a lower thermal conductivity of the particle. The results indicate that the effective thermal conductivity distribution greatly depends on Kapitza thermal resistance, particle size, and degree of material gradient.


1993 ◽  
Vol 323 ◽  
Author(s):  
Shy-Wen Lai ◽  
D. D. L. Chung

AbstractAluminum-matrix composites containing AIN or SiC particles were fabricated by vacuum infiltration of liquid aluminum into a porous particulate preform under an argon pressure of up to 41 MPa. Al/AIN was superior to Al/SiC in thermal conductivity. At 59 vol.% AIN, Al/AlN had a thermal conductivity of 157 W/m. °C and a thermal expansion coefficient of 9.8 × 10−-6°C−1 (35–100 °C). Al/AlN had similar tensile strength and higher ductility compared to Al/SiC of a similar reinforcement volume fraction at room temperature, but exhibited higher tensile strength and higher ductility at 300–400°C. The ductility of Al/AlN increased with increasing temperature from 22 to 400°C, while that of Al/SiC did not change with temperature. The superior high temperature resistance of Al/AlN is attributed to the lack of a reaction between Al and AIN, in contrast to the reaction between Al and SiC in AI/SiC.


2018 ◽  
Vol 12 ◽  
pp. 454-461 ◽  
Author(s):  
Ali Khodayari ◽  
Matteo Fasano ◽  
Masoud Bozorg Bigdeli ◽  
Shahin Mohammadnejad ◽  
Eliodoro Chiavazzo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document