Fabrication and Mechanical Properties of Wood-PMMA Composite

2010 ◽  
Vol 160-162 ◽  
pp. 640-643
Author(s):  
Yong Feng Li ◽  
Duo Jun Lv ◽  
Chi Jiang ◽  
Yi Xing Liu ◽  
Hong Yue Zhang

A new composite, wood-polymer composite, was fabricated by formation of poly (methyl methacrylate) in wood cellular structure. Methyl methacrylate (MMA) monomer and a few of 2,2'- azobisisobutyronitrile (AIBN) as an initiator, as well as several drops of pyrimidine as catalyst were first impregnated into wood porous structure under a pressure condition, and then initiated for thermal polymerization through a catalyst-thermal treatment. The mechanical properties of the composite were tested, and the composite was also analyzed by SEM and DSC to further correlate its performance. The results indicated that the modulus of rupture, modulus of elasticity, compression strength and hardness of Wood-PMMA Composite were improved by 68.28%, 110.27%, 62.43%, 357% over those of Untreated Wood, respectively. The SEM observations showed that PMMA generated and filled up wood pores under the employed conditions, and thus reinforced the mechanical properties of wood. DSC analysis suggested that Wood-PMMA Composite was more thermal stability than Untreated Wood as the formation of PMMA within wood pores.

2010 ◽  
Vol 26-28 ◽  
pp. 971-975
Author(s):  
Xin Meng ◽  
Yong Feng Li ◽  
Jian Li ◽  
Yi Xing Liu

A new composite, wood-polymer composite, was fabricated by formation of poly (methyl methacrylate) in wood cellular structure. Methyl methacrylate (MMA) monomer and a few of 2,2'- azobisisobutyronitrile (AIBN) as an initiator, as well as several drops of pyrimidine as catalyst were first impregnated into wood porous structure under a pressure condition, and then initiated for thermal polymerization through a catalyst-thermal treatment. The structure of Wood-PMMA Composite was characterized by SEM, FTIR, XRD, and its thermal stability was also examined. The results indicate that PMMA polymer generated in wood cellular structure as an amorphous form, and interacted with wood cell walls, resulting in chemical combination between them. The thermal stability of Wood-PMMA composite was higher than untreated wood under 450°C.


2010 ◽  
Vol 34-35 ◽  
pp. 1165-1169 ◽  
Author(s):  
Yong Feng Li ◽  
Bao Gang Wang ◽  
Qi Liang Fu ◽  
Yi Xing Liu ◽  
Xiao Ying Dong

In order to improve the value-added applications of low-quality wood, a novel composite, wood-polymer composite, was fabricated by in-situ terpolymerization of MMA, VAc and St within wood porous structure. The structure of the composite and the reaction of monomers within wood were both analyzed by SEM and FTIR, and the mechanical properties were also evaluated. The SEM observation showed that the polymer mainly filled up wood pores, suggesting good polymerizating crafts. The FTIR results indicated that under the employed crafts, three monomers terpolymerized in wood porous structure, and grafted onto wood matrix through reaction of ester group from monomers and hydroxyl group from wood components, suggesting chemical combination between the two phases. The mechanical properties of the wood-polymer composite involving modulus of rupture, compressive strength, wearability and hardness were improved 69%, 68%, 36% and 210% over those of untreated wood, respectively. Such method seems to be an effective way to converting low-quality wood to high-quality wood.


2010 ◽  
Vol 139-141 ◽  
pp. 1419-1423
Author(s):  
Yun Lin Fu ◽  
Yong Feng Li ◽  
Yi Xing Liu ◽  
Bao Gang Wang

A novel Wood-Polymer Composite, Wood-PSt composite combining both advantages of wood and polystyrene was fabricated by determining the polymerization craft of monomer in wood porous structure through impregnating monomer into wood pores and followed by in-situ polymerization through a thermal-catalyst treatment. The performance was examined, and its structure was also characterized by SEM and FTIR. The results indicate that the optimum polymerizing craft is: 80oC, 8h and 3% AIBN. Under the optimum craft, the mechanical properties involving modulus of elasticity and compression strength were linearly increased with content of polystyrene. SEM and FTIR show that styrene polymerized under the employed polymerization craft, and the resultant polystyrene relatively full generated in wood cellular structure, in accordance with the results of the optimum polymerizing craft. Such composite having good mechanical properties and biomass features can be widely used in fields of construction, traffic and furniture.


2012 ◽  
Vol 166-169 ◽  
pp. 2938-2941 ◽  
Author(s):  
Yong Feng Li ◽  
Ding Wang Gong ◽  
Xiao Ying Dong ◽  
Zhen Bo Liu

Fast-growing poplar wood, Populus ussuriensis Kom, was used to prepare novel wood-polymer composite by the in-situ polymerization of methyl methacrylate (MMA) and styrene (St). SEM observation and FTIR analysis indicated that the resulted polymer well filled up wood cell lumen and physically reinforce wood matrix. The test results also proved that the mechanical properties of wood including modulus of rupture, modulus of elasticity, compression strength and hardness of were improved by 68.28%, 110.27%, 62.43%, 357% over those of Untreated Wood, respectively. Such wood-based composite could be potentially used as reinforced material in construction fields.


2010 ◽  
Vol 26-28 ◽  
pp. 181-185 ◽  
Author(s):  
Yong Feng Li ◽  
Xin Meng ◽  
Jian Li ◽  
Yi Xing Liu

A new material was prepared by formation of polystyrene in situ wood porous structure from styrene monomer through thermal-catalyst treatment. And the performance of such wood-polymer composite, containing mechanical properties and durability, was also tested. The SEM results showed that polymer was generated inside wood, and filled in wood cellular structure. The mechanical properties of such wood-polystyrene composite including modulus of rupture (MOR), modulus of elasticity (MOE), compression strength and hardness, were respectively improved 38%, 77%, 21% and 97% over untreated wood. And the durability of the novel composite involving dimensional stability, decay resistance and stability against weather erosion were remarkably improved than those of untreated wood. Such composite can be widely used in fields of construction, traffic and interior decoration, which greatly enhanced the utilization of low-valued wood material instead of high-quality wood.


2009 ◽  
Vol 87-88 ◽  
pp. 456-461 ◽  
Author(s):  
Yong Feng Li ◽  
Yi Xing Liu ◽  
Jiang Tao Shi ◽  
Gang Li

In order to prepare a wood-based composite material which, as a type of multifunctional and natural bio-based material, possesses satisfactory mechanical properties, excellent durability (i.e., decay resistance and dimensional stability), and Aenvironmental characteristic, the study presents a new method which is based on the cellular structure of wood by initiating polymerizable monomers for in situ polymerization. Glycidyl methacrylate (GMA) as a multifunctional and polymerizable monomer was chosen, and impregnated into the porous structure of wood. After a thermal-catalyst process, the wood-based composite, PGMA/Wood, was prepared. The structure of this material was analyzed by SEM, FTIR and XRD; and its performance was also determined. The analyzing results show that GMA not only polymerized in the cellular structure in a solid form and amorphous form, which fully and uniformly filled in wood cell lumen, but also sufficiently grafted onto wood cell walls in a chemical level, resulting in tight contact between wood cell walls and resultant polymers (PGMA) without any obvious cracks. The test results of mechanical properties show that the modulus of rupture (MOR), modulus of elasticity (MOE), compression strength, and hardness of PGMA/Wood increased by 82%, 122%, 139%, and 348% over those of untreated wood, respectively. The test results of durability show that the dimensional stability and decay resistance of PGMA/Wood improved 44% and 91% than those of untreated wood, respectively. Such composite could be widely applied in the fields of construction, furniture and traffic.


2009 ◽  
Vol 79-82 ◽  
pp. 1527-1530
Author(s):  
Yong Feng Li ◽  
Yi Xing Liu ◽  
Hai Peng Yu ◽  
Wen Shuai Chen

Wood as a porous structure has weak durability and unsatisfactory mechanical properties which limits its utilization. For this reason, the study presents a two-step method to prepare a new modified wood material—Wood Polymer Composite. Maleic anhydride(Man) firstly penetrates into the porous structure of wood, followed by a reaction with wood cell walls. Then, Styrene(St) with some Man and a few amount of initiator, AIBN, permeate through the whole wood and react with the above modified wood. The structural characterization of wood polymer composite with SEM and FTIR indicates that Man reacts successfully with the hydroxyl group of wood cell wall by its anhydride group, and further reacts fully with styrene as a free radical copolymerization form by its double bond; and thus the polymer fills in wood cell lumina as a solid form, which combines the wood cell walls without any evident crack. The testing results of properties show that the mechanical properties of wood polymer composite increase by about 50%-250% over those of unmodified wood, and its durability improve 1.9-4.89 times than untreated wood.


2011 ◽  
Vol 264-265 ◽  
pp. 819-824 ◽  
Author(s):  
Md. Rezaur Rahman ◽  
Sinin Hamdan ◽  
M. Saiful Islam ◽  
Md. Shahjahan Mondol

In Malaysia, especially Borneo Island Sarawak has a large scale of tropical wood species. In this study, selected raw tropical wood species namely Artocarpus Elasticus, Artocarpus Rigidus, Xylopia Spp, Koompassia Malaccensis and Eugenia Spp were chemically treated with sodium meta periodate to convert them into wood polymer composites. Manufactured wood polymer composites were characterized using mechanical testing (modulus of elasticity (MOE), modulus of rupture (MOR), static Young’s modulus) and decay resistance test. Modulus of elasticity and modulus of rupture were calculated using three point bending test. Static Young’s modulus and decay resistance were calculated using compression parallel to gain test and natural laboratory decay test respectively. The manufactured wood polymer composites yielded higher modulus of elasticity, modulus of rupture and static Young’s modulus. Wood polymer composite had high resistant to decay exposure, while Eugenia Spp wood polymer composite had highly resistant compared to the other ones.


Sign in / Sign up

Export Citation Format

Share Document