Preparation and Property of Wood Polymer Composite with a Two-Step Method

2009 ◽  
Vol 79-82 ◽  
pp. 1527-1530
Author(s):  
Yong Feng Li ◽  
Yi Xing Liu ◽  
Hai Peng Yu ◽  
Wen Shuai Chen

Wood as a porous structure has weak durability and unsatisfactory mechanical properties which limits its utilization. For this reason, the study presents a two-step method to prepare a new modified wood material—Wood Polymer Composite. Maleic anhydride(Man) firstly penetrates into the porous structure of wood, followed by a reaction with wood cell walls. Then, Styrene(St) with some Man and a few amount of initiator, AIBN, permeate through the whole wood and react with the above modified wood. The structural characterization of wood polymer composite with SEM and FTIR indicates that Man reacts successfully with the hydroxyl group of wood cell wall by its anhydride group, and further reacts fully with styrene as a free radical copolymerization form by its double bond; and thus the polymer fills in wood cell lumina as a solid form, which combines the wood cell walls without any evident crack. The testing results of properties show that the mechanical properties of wood polymer composite increase by about 50%-250% over those of unmodified wood, and its durability improve 1.9-4.89 times than untreated wood.

2010 ◽  
Vol 34-35 ◽  
pp. 1165-1169 ◽  
Author(s):  
Yong Feng Li ◽  
Bao Gang Wang ◽  
Qi Liang Fu ◽  
Yi Xing Liu ◽  
Xiao Ying Dong

In order to improve the value-added applications of low-quality wood, a novel composite, wood-polymer composite, was fabricated by in-situ terpolymerization of MMA, VAc and St within wood porous structure. The structure of the composite and the reaction of monomers within wood were both analyzed by SEM and FTIR, and the mechanical properties were also evaluated. The SEM observation showed that the polymer mainly filled up wood pores, suggesting good polymerizating crafts. The FTIR results indicated that under the employed crafts, three monomers terpolymerized in wood porous structure, and grafted onto wood matrix through reaction of ester group from monomers and hydroxyl group from wood components, suggesting chemical combination between the two phases. The mechanical properties of the wood-polymer composite involving modulus of rupture, compressive strength, wearability and hardness were improved 69%, 68%, 36% and 210% over those of untreated wood, respectively. Such method seems to be an effective way to converting low-quality wood to high-quality wood.


2012 ◽  
Vol 166-169 ◽  
pp. 2938-2941 ◽  
Author(s):  
Yong Feng Li ◽  
Ding Wang Gong ◽  
Xiao Ying Dong ◽  
Zhen Bo Liu

Fast-growing poplar wood, Populus ussuriensis Kom, was used to prepare novel wood-polymer composite by the in-situ polymerization of methyl methacrylate (MMA) and styrene (St). SEM observation and FTIR analysis indicated that the resulted polymer well filled up wood cell lumen and physically reinforce wood matrix. The test results also proved that the mechanical properties of wood including modulus of rupture, modulus of elasticity, compression strength and hardness of were improved by 68.28%, 110.27%, 62.43%, 357% over those of Untreated Wood, respectively. Such wood-based composite could be potentially used as reinforced material in construction fields.


2010 ◽  
Vol 26-28 ◽  
pp. 181-185 ◽  
Author(s):  
Yong Feng Li ◽  
Xin Meng ◽  
Jian Li ◽  
Yi Xing Liu

A new material was prepared by formation of polystyrene in situ wood porous structure from styrene monomer through thermal-catalyst treatment. And the performance of such wood-polymer composite, containing mechanical properties and durability, was also tested. The SEM results showed that polymer was generated inside wood, and filled in wood cellular structure. The mechanical properties of such wood-polystyrene composite including modulus of rupture (MOR), modulus of elasticity (MOE), compression strength and hardness, were respectively improved 38%, 77%, 21% and 97% over untreated wood. And the durability of the novel composite involving dimensional stability, decay resistance and stability against weather erosion were remarkably improved than those of untreated wood. Such composite can be widely used in fields of construction, traffic and interior decoration, which greatly enhanced the utilization of low-valued wood material instead of high-quality wood.


2010 ◽  
Vol 150-151 ◽  
pp. 1-5
Author(s):  
Yong Feng Li ◽  
Chi Jiang ◽  
Duo Jun Lv ◽  
Xiao Ying Dong ◽  
Yi Xing Liu

In order to improve the value-added applications of low-quality wood, a novel Wood-Polymer Composite was fabricated by in-situ synthesis of copolymer from monomers within wood porous structure. The structure was characterized with SEM and FTIR, and its dimensional stability was also tested. The SEM observations showed that copolymer filled up wood pores and contact tightly with wood matrix, indicating strong interactions between them. FTIR analysis indicated that when the monomers copolymerized in situ wood porous structure, they also reacted with wood matrix by reaction of hydroxyl groups and ester groups, indicating chemical bond between the two phases, which is agreement with SEM observations. The volume swelling efficiency and contact angle of such composite were higher than those of wood, respectively, indicating good dimensional stability involving volume swelling efficiency and contact angle. Such composite could be potentially applied in fields of construction, traffic and indoor decoration.


2009 ◽  
Vol 79-82 ◽  
pp. 1021-1024 ◽  
Author(s):  
Yong Feng Li ◽  
Yi Xing Liu ◽  
Xiang Ming Wang ◽  
Xiu Rong Li

In order to improve the durability of marine wood against the long-term marine corrosion, the study explores to use two bifunctional reagents, maleic anhydride (Man) and glycidyl methacrylate(GMA), to react with wood by impregnating them into the porous structure of wood and further initiating them to polymerize with an initiator, AIBN, through a heat process. After the above modification, the durability of the marine wood treated with polymer was tested, and its mechanism was further analyzed as well. The testing results of the durability show that the acid resistance, the alkali resistance, the decay resistance against marine borers and the dimensional stability of the treated wood increases by 2.02 times, 12.39 times, 4.96 times and 3 times over untreated wood, respectively; and its Anti Swelling Efficiency (ASE) for dimensional stability reaches 53%, which almost equals the value of the wood treated by PEG-1500 under the same condition, while its leachability resistance is greatly higher than wood treated by PEG-1500. The analysis result with FTIR indicates that Man and GMA both react with wood, and Man reacts with the hydroxyl group of wood cell walls by its anhydride group, and GMA polymerizes in the porous structure of wood. The charactering result with SEM reveals that the resultant polymer fills in wood cell lumina as a solid form, which contacts tightly the wood cell walls without obvious gaps. The greatly reducing amount of hydroxyl groups after the reaction and the heavy jamming channels for water and marine borers approaching to wood cell walls both contribute to the improving durability of the modified wood.


2010 ◽  
Vol 450 ◽  
pp. 181-184 ◽  
Author(s):  
Yong Feng Li ◽  
Yi Xing Liu ◽  
Feng Hu Wang ◽  
Duo Jun Lv ◽  
Chi Jiang

Inspired from the natural porous structure of wood, a novel wood-polymer composite combining both advantages of wood with high strength-to-weight ratio as a natural renewable resource and polymer as a reinforcer was manufactured by synthesis of terpolymer of methyl methacrylate (MMA), Styrene (St) and Vinyl Acetate (VAc) inside wood. The three kinds of monomers with a few of 2,2'- azobisisobutyronitrile (AIBN) as an initiator, as well as some additives were first impregnated into wood porous structure under a pressure condition, and then initiated for terpolymerization through a catalyst-thermal treatment. The impregnating conditions containing pressure value and pressure time, and polymerizing crafts including heating temperature and heating time, as well as additive content were confirmed according to rate of monomer loading and rate of polymer loading inside wood. Results indicate that among these influencing factors, pressure and temperature were the significant influencing factors; and the rate of monomer loading and rate of polymer loading linearly positive correlated to them, respectively. SEM observation shows that the terpolymer fully filled in wood porous structure under the optimum manufacturing craft.


2012 ◽  
Vol 549 ◽  
pp. 699-702
Author(s):  
Xiao Ying Dong ◽  
Ding Wang Gong ◽  
Zhen Bo Liu ◽  
Yi Xing Liu

A novel composite, wood-polymer composite, was fabricated by polymerization of functional monomers within wood porous structure. The wood was a fast-growing plant wood, Micheliamacclurel wood, which was rarely reported in previous studies, and two functional monomers, glycidyl methacrylate and ethylene glycol dimethacrylate, were novelly employed. The monomers, added with a few Azo-bis-isobutryonitrile as initiator, and maleic anhydride as catalyst, were first impregnated into wood pores under vacuum/pressure conditions, and then in-situ polymerized into polymers through a catalyst-thermal treatment. After the processes, wood-polymer composite was resulted. SEM and FTIR analysis for the composite indicated that the monomers polymerized into solid polymer, which fully filled up wood pores, and the resulted polymer grafted onto wood matrix, resulting in good interface combination between polymer and wood matrix. Such composite with satisfactory interface can be potentially applied as structural material in construction field.


Sign in / Sign up

Export Citation Format

Share Document