Analysis of Seismic Performance of Mega Steel Braced Frame-Composite Steel Plate Shear Wall Structure

2010 ◽  
Vol 163-167 ◽  
pp. 2077-2081
Author(s):  
Lin Chen ◽  
Xing Liu ◽  
Yun Zhou ◽  
Xiao Hu

Mega steel braced frame-composite steel plate shear wall structure, consisting of mega steel braced frame as outer frame and composite steel plate shear walls as core wall, is a new type of hybrid structure that is proposed in this study. Seismic performance of this new structure was analyzed under frequent earthquake and severe earthquake. The analysis focused mainly on displacement response, seismic base shear distribution and failure mechanism. Comparing with traditional steel frame-RC core wall structure, this new type of hybrid structure presents better coorporative working performance since mega steel braced frame provides larger stiffness and composite steel plate shear wall provides a fairly ductile response. It can be observed from the failure mechanism that this structure has multiple seismic resistant systems with composite steel plate shear wall, mega braces and mega frame when subjected to severe earthquakes.

2013 ◽  
Vol 351-352 ◽  
pp. 219-222
Author(s):  
Xiao Tong Peng ◽  
Ying Ying Hou ◽  
Lei Xia

The semi-rigid steel frame-composite steel plate shear wall structure (SCSW) effectively improves the lateral stiffness of shear wall, making it possible to use the semi-rigid joint. In order to study the plastic failure mechanism of SCSW, a plastic model is established, in which the effects of the rotations of semi-rigid joints and yield deformations of infill steel walls on the energy consumption are considered. Based on that, a design method for the lateral ultimate strength is put forward and a nonlinear FEM model is setup using ANSYS. Through the comparison between plastic analysis results with the finite element results, it is shown that the plastic analysis method is feasible and has a safe redundancy.


2018 ◽  
Vol 151 ◽  
pp. 194-203 ◽  
Author(s):  
Yipeng Du ◽  
Jiping Hao ◽  
Jinguang Yu ◽  
Haisheng Yu ◽  
Bowen Deng ◽  
...  

2013 ◽  
Vol 671-674 ◽  
pp. 1408-1413
Author(s):  
Ning Zhou ◽  
Feng Xiong ◽  
Qun Yi Huang ◽  
Qi Ge ◽  
Jiang Chen

Composite steel plate shear wall (CSPSW), as a new lateral force resisting structure composed of steel plate and concrete slab, is introduced. CSPSWs can fully display the superiority of the steel plate and concrete. Ductility and energy dissipation capacity of the walls are increased and seismic behavior is improved. Recent seismic research around the word of two kinds of CSPSWs, namely, CSPSW with signal steel plate and CSPSW with double steel plates, is presented and discussed comprehensively. Some existing problems in current research of the walls are also reviewed in this paper.


2015 ◽  
Vol 2015 ◽  
pp. 1-16 ◽  
Author(s):  
Jin-yu Lu ◽  
Lu-nan Yan ◽  
Yi Tang ◽  
Heng-hua Wang

To determine the force mechanism for the steel plate shear wall with slits, the pushover analysis method was used in this study. An estimated equation for the lateral bearing capacity which considered the effect of edge stiffener was proposed. A simplified elastic-plastic analytical model for the stiffened steel slit wall composed of beam elements was presented, where the effects of edge stiffeners were taken into account. The wall-frame analysis model was established, and the geometric parameters were defined. Pushover analysis of two specimens was carried out, and the analysis was validated by comparing the results from the experiment, the shell element model, and a simplified model. The simplified model provided a good prediction of the lateral stiffness and the strength of the steel slit wall, with less than 10% error compared with the experimental results. The mutual effects of the bearing wall and the frame were also predicted correctly. In the end, the seismic performance evaluation of a steel slit wall-frame structure was presented. The results showed that the steel slit wall could prevent the beams and columns from being damaged by an earthquake and that the steel slit wall was an efficient energy dissipation component.


ce/papers ◽  
2017 ◽  
Vol 1 (2-3) ◽  
pp. 3181-3189 ◽  
Author(s):  
Abhishek Verma ◽  
Dipti Ranjan Sahoo

Sign in / Sign up

Export Citation Format

Share Document