Experimental Study on Bearing Properties of Self-Compacting Prestressed Concrete Beams

2010 ◽  
Vol 163-167 ◽  
pp. 918-927
Author(s):  
Wei Liu ◽  
Zhen Fu Chen

Five different types of self-compacting unbonded prestressed concrete beams are designed to study the bearing properties of self-compacting prestressed concrete flexural members. And experimental studies are conducted on their cracking loads, flexural strengths, ductility of members and failure forms. The testing results provide references for design and establishing related codes of self-compacting prestressed concrete structures.

Materials ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 2087 ◽  
Author(s):  
Danhui Dan ◽  
Pengfei Jia ◽  
Guoqiang Li ◽  
Po Niu

It is typically difficult for engineers to detect the tension force of prestressed tendons in concrete structures. In this study, a smart bar is fabricated by embedding a Fiber Bragg Grating (FBG) in conjunction with its communication fiber into a composite bar surrounded by carbon fibers. Subsequently, a smart composite cable is twisted by using six outer steel wires and the smart bar. Given the embedded FBG, the proposed composite cable simultaneously provides two functions, namely withstanding tension force and self-sensing the stress state. It can be potentially used as an alternative to a prestressing reinforcement tendon for prestressed concrete (PC), and thereby provide a solution to detecting the stress state of the prestressing reinforcement tendons during construction and operation. In the study, both the mechanical properties and sensing performance of the proposed composite cable are investigated by experimental studies under different force standing conditions. These conditions are similar to those of ordinary prestressed tendons of a real PC components in service or in a construction stage. The results indicate that the proposed smart composite cable under the action of ultra-high pretension stress exhibits reliable mechanical performance and sensing performance, and can be used as a prestressed tendon in prestressed concrete structures.


2013 ◽  
Vol 5 (2) ◽  
pp. 76-81 ◽  
Author(s):  
Edgaras Atutis ◽  
Juozas Valivonis ◽  
Mantas Atutis

The current economic pressures on utilities to extend a service life of structural concrete mean that concrete structures may have to perform safety functions for a time period significantly greater than their initial design life. However, the structural design and construction requirements for concrete structures with non-metallic reinforcement are very unique and not complete. This paper aims to provide experimental investigations of concrete beams reinforced with GFRP (glass fibre reinforced polymers) based on flexural strength. Both reinforced and prestressed concrete beams have been tested. Together with the strength characteristics, the effect of pre-stress on deflection and cracking distribution has been mainly governed by the stress–strain laws of reinforced concrete. The work is resulted in design code equations for the prediction of the ultimate flexural strength. The influence of the effect of prestressing on the deflection and cracking was analysed. Santrauka Dėl dabartinės ekonominės situacijos vis labiau siekiama, kad konstrukcinis betonas būtų naudojamas kuo ilgiau. Ypač su sauga susijusioms gelžbetoninėms konstrukcijoms dažnai keliami reikalavimai, kad per eksploatacinį šių konstrukcijų laikotarpį pagrindinės betono savybės liktų nepakitusios, lyginant su projektinėmis vertėmis. Vis dėlto reikalavimai, keliami šių konstrukcijų eksploatavimui, yra unikalūs, tačiau nėra visiškai apibrėžti. Straipsnyje aprašomi sijų, armuotų stiklo pluošto armatūra, eksperimentiniai tyrimai, kuriuose buvo nagrinėjama šių sijų laikomoji galia statmenajame pjūvyje. Buvo bandomos sijos, armuotos išilgine iš anksto įtempta stiklo pluošto armatūra, ir sijos, armuotos neįtemptąja stiklo pluošto armatūra. Gautos statmenojo pjūvio laikomosios galios lyginamos su įvairiomis projektavimo normomis ir rekomendacijomis, analizuojama išankstinio įtempimo reikšmė sijų įlinkiui bei pleišėtumui.


2012 ◽  
Vol 268-270 ◽  
pp. 749-752
Author(s):  
Shou Yu Cheng ◽  
Dong Jin Yan ◽  
Yan Zhao Li ◽  
Jin Ming Zhai ◽  
Qing Hua Cai ◽  
...  

By the method of plane charge on the tested beams, this paper studied 6 pieces of beams, dynamic performance by 4 time loadings, displayed the deflection waveform curves, measured the bearing ability of beams with different prestress degree, analyzed the effects of the deformed performance and the ductility of the test beams with the different prestress degree. The 6 pieces of PC(prestressed concrete)beams was divided into 2 groups.


2000 ◽  
Vol 1696 (1) ◽  
pp. 238-272
Author(s):  
Michel Virlogeux

An overview of the recent evolution in the design and construction of prestressed concrete bridges worldwide is provided. Several major trends are evidenced. Certainly those trends that have had greater influences on the industry because of their wide applications are the development of external prestressing, which is now systematically used in some countries for medium-span bridges; the emergence of high-performance concrete, which extends the possibilities at the same time as it improves the durability of concrete structures; and the more frequent association of steel and concrete for composite bridges of different types and composite elements in bridges, allowing the construction of many innovative structures. For more specific applications, cable-stayed bridges, for which interesting developments have been seen in the last 10 years, and the more extensive use of heavy prefabrication in large projects, with elements up to several thousands of metric tons, are also described. Bridge architecture is also discussed in terms of the fact that good structural designs can produce elegant prestressed concrete bridges.


Sign in / Sign up

Export Citation Format

Share Document