Seebeck Effect in Graphite-Carbon Fiber Cement Based Composite

2010 ◽  
Vol 177 ◽  
pp. 566-569 ◽  
Author(s):  
Hai Yong Cao ◽  
Wu Yao ◽  
Jun Jie Qin

The Seebeck effect in carbon fiber reinforced cement-based composite (CFRC) is of interest because it enables the cement-based materials to sense its own temperature without attached or embedded sensor. In this study, the Seebeck coefficient of CFRC and graphite-carbon fiber cement based composite were measured. Results show that the addition of graphite can enhance the Seebeck effect of CFRC. When graphite content is 10wt. %, all types of CFRC show P-type because the hole contribution from carbon fiber dominates the Seebeck effect. When the graphite content is 20wt. %, the change of thermoelectric power (TEP) from positive to negative occurs with the increasing of graphite to carbon fiber ratio (≥25). This phenomenon indicates that compensation takes place between electron contribution from graphite and hole contribution from carbon fiber. At a high graphite content (30wt. %), CFRC shows N-type above a certain temperature difference (20-25°C) since the electrons from graphite dominate the Seebeck effect.

2004 ◽  
Vol 19 (4) ◽  
pp. 1294-1294 ◽  
Author(s):  
Sihai Wen ◽  
D.D.L. Chung

In the two papers listed above, the conversion of the Seebeck coefficient (relative to copper) to the absolute thermoelectric power was done by using the wrong sign of the absolute thermoelectric power of copper (2.34 μV/°C). The corrected tables are shown below for both papers. The correction means that plain cement paste is slightly p-type rather than slightly n-type. In addition, it means that cement pastes with carbon fibers are more p-type and those with steel fibers are less n-type than reported. Note in Table III of Paper 2 that all cement pastes are p-type except for paste (ii). Note in Table IV of Paper 2 that all cement junctions are pn-junctions (rather than some being nn+-junctions).


2013 ◽  
Vol 667 ◽  
pp. 165-171
Author(s):  
Zurianti A. Rahman ◽  
Khaulah Sulaiman ◽  
Mohamad Rusop ◽  
Ahmad Shuhaimi

The studies on the thermoelectric (TE) properties of 3,4,9,10-Perylenetetracarboxylic dianhydride (PTCDA) and a conducting polymer Poly(ethylenedioxythiopene): poly(styrenesulfonate) (PEDOT:PSS)–PH1000 are presented. PTCDA and PEDOT:PSS have been used as a potential n-type material and a p-type material for the TE device, respectively. The Seebeck coefficients, open circuit voltage and the output power have been obtained for the fabricated TE device. The Seebeck effect was observed on this TE device where the output power in the range of 1 nW/cm2 to 5 nW/cm2,was successfully deduced from this TE device. It was found that the association of PEDOT:PSS and PTCDA have been acting well in this TE device. However, a higher TE performance, in the future could be developed, by applying a thermal treatment and introducing a suitable dopant to this n-type material which may increase the mobility of the electrons and the Seebeck coefficient.


2013 ◽  
Vol 320 ◽  
pp. 354-357 ◽  
Author(s):  
Jian Wei ◽  
Lei Hao ◽  
Ge Ping He ◽  
Chun Li Yang

Micro-sized Ca3Co4O9powder was prepared by solid phase method at 850-950°C in air atmosphere. Seebeck effect of carbon fiber reinforced cement composites was enhanced efficiently by combining the Ca3Co4O9powder of 3.0wt.% by mass of cement. The absolute thermoelectric power achieves 1.65 fold increase and is up to 58.6μV/°C at room temperature. The lower activation energy of holes carriers and higher carrier concentration by doping Ca3Co4O9, are probably attributed to the increase of absolute thermoelectric power.


Carbon Trends ◽  
2021 ◽  
Vol 3 ◽  
pp. 100030
Author(s):  
Jin Hee Kim ◽  
Jong Hun Han ◽  
Seungki Hong ◽  
Doo-Won Kim ◽  
Sang Hee Park ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document