Removal of Thiophene from Simulated Oil by Catalytic Oxidation Using K2FeO4/ V2O5

2011 ◽  
Vol 183-185 ◽  
pp. 1568-1572
Author(s):  
Yan Xiu Liu ◽  
Hua Song

Oxidation extraction of thiophene from simulated oil by using K2FeO4as oxidant and methanol as extractant has been investigated. The effects of different catalyst, oxidant amount, catalyst amount, reaction temperature, reaction time, and extraction conditions were studied. This process is capable of decreasing the sulfur content of simulated oil from 100 mg•L-1to 17.8 mg•L-1at the optimal conditions. The results indicate that such a process could be an alternative to common hydrodesulfurization for deep desulfurization.

2013 ◽  
Vol 291-294 ◽  
pp. 249-252
Author(s):  
Ying Liu ◽  
Lu Lin ◽  
Xiao Yu Sui ◽  
Jun Ping Zhuang ◽  
Chun Sheng Pang

Hydrolysis of glucose to produce levulinic acid catalyzed by ZSM-5 loading SO42-/ ZrO2 was studied in this paper. The effects of different factors such as catalyst amount, reaction temperature, reaction time on the yields of levulinic acid and hydroxymethyl furfural were investigated. It was found that the highest yield of levulinic acid was 55.03% (molar percent) under the conditions of catalyst amount 3 g, reaction temperature 180 °C and reaction time 2.5 h. Surface structure of catalyst was analyzed by FT-IR, indicating that crystallinity of catalyst was 0.66.


2011 ◽  
Vol 233-235 ◽  
pp. 1288-1291
Author(s):  
Jiao Jing Zhang ◽  
Bing Bai ◽  
Hua Song

Catalytic oxidation of cyclohexane to cyclohexanone and cyclohexanol using hydrogen peroxide over ferrous sulfate catalyst at atmospheric condition was studied. Effect of the solvent volume, catalyst amount, hydrogen peroxide volume, reaction temperature, reaction time on reaction was investigated. Results showed that using 10 mL of acetone, 0.02 g of a ferrous sulfate and 0.5 mL of hydrogen peroxide at thereaction temperature of 80 °C for 8 h, the conversion of cyclohexane was 35.35%, the total selectivity of cyclohexanone and cyclohexanol was 94.06%.


2012 ◽  
Vol 549 ◽  
pp. 411-414
Author(s):  
Jiao Jing Zhang ◽  
Hua Lin Song ◽  
Jian Wang ◽  
Hua Song

The catalytic oxidation of cyclohexane to cyclohexanone and cyclohexanol using hydrogen peroxide over phosphomolybdic acid were studied. Factors such as the amount of catalyst, amount of the oxidant (H2O2), reaction temperature and reaction time were investigated. The conversion of cyclohexane was 35.35%, the total selectivity to cyclohexanone and cyclohexanol was 97.68% at a reaction temperature of 70 °C, reaction time of 8 h, 10 mL of acetone, 0.01 g of phosphomolybdic acid and 0.5 mL of hydrogen peroxide.


2013 ◽  
Vol 734-737 ◽  
pp. 2532-2535
Author(s):  
Hong Ying Chu ◽  
Zhi Ran Chen

Organic intermediate di (chloroethyl) phosphite was synthesized in this work. The influence of reaction temperature, reaction time and solvent on the yield of product was investigated with orthogonal method. The experiment results show that the optimal conditions were molar ration of 2-chloroethannol / phosphorus trichloride 4.0:1, reaction temperature 65~75 °C, reaction time 4h, solvent 60 mL, and the yield of the product reached 89.5%. The asprepared di (chloroethyl) phosphite samples were further characterized by FT-IR and NMR.


2013 ◽  
Vol 634-638 ◽  
pp. 490-493
Author(s):  
Bing Han ◽  
Wen Bo Zhao ◽  
Xian Ye Qin ◽  
Yan Hong Li ◽  
Wei Wei

A series of metal oxides were employed as catalysts for the synthesis of dimethylhexane -1,6-dicarbamate(HDC) from 1,6-hexamethylenediamine(HDA) and methyl carbonate(MC). Lead dioxide showed excellent catalytic activity, 100% HDA conversion and 93% HDC yield could be achieved at 463K for 6h. The effects of reaction temperature, reaction time and catalyst amount on the yield of HDC were investigated in details.


2017 ◽  
Vol 2017 ◽  
pp. 1-7
Author(s):  
Shenggui Liu ◽  
Rongkai Pan ◽  
Guobi Li ◽  
Wenyi Su ◽  
Chunlin Ni

A new ruthenium complex, Ru(bpbp)(pbb)Cl, based on 2,6-bis(1-(phenyl)-1H-benzo[d]imidazol-2-yl)pyridine (bpbp) and 2-(1-phenyl-1H-benzo[d]imidazol-2-yl)benzoate (pbb) was synthesized. The complex Ru(bpbp)(pbb)Cl could catalytically oxidize 1-(1H-benzo[d]imidazol-2-yl)ethanol to 1-(1H-benzo[d]imidazol-2-yl)ethanone with H2O2 as oxidant. Influence of temperature and catalyst amount on the oxidation reaction was evaluated. The reaction optimal conditions are as follows: molar ratio of catalyst to substrate to H2O2 is 1 : 1000 : 3000, the proper reaction temperature is 50°C and reaction time lasts 5 h, and the isolated yield of 1-(1H-benzo[d]imidazol-2-yl)ethanol to 1-(1H-benzo[d]imidazol-2-yl)ethanone under the optimal reaction conditions is 57%.


2017 ◽  
Vol 41 (2) ◽  
pp. 88-92
Author(s):  
Shenggui Liu ◽  
Rongkai Pan ◽  
Wenyi Su ◽  
Guobi Li ◽  
Chunlin Ni

2,6-Bis[1-(pyridin-2-yl)-1H-benzo[d]-imidazol-2-yl]pyridine (bpbp), which has been synthesised by intramolecular thermocyclisation of N2,N6-bis[2-(pyridin-2-ylamino)phenyl]pyridine-2,6-dicarboxamide, reacts with sodium pyridine-2,6-dicarboxylate (pydic) and RuCl3 to give [Ru(bpbp)(pydic)] which can catalyse the oxidation of (1H-benzo[d]imidazol-2-yl)methanol to 1H-benzo[d]imidazole-2-carbaldehyde by H2O2. The optimal reaction conditions were: molar ratios of catalyst to substrate to H2O2 set at 1: 1000: 3000; reaction temperature 50 °C; reaction time 5 h. The yield of (1H-benzo[d]imidazol-2-yl) methanol was 70%.


2013 ◽  
Vol 634-638 ◽  
pp. 1513-1517
Author(s):  
Ping Lan ◽  
Yu Xian Feng ◽  
A Ming Chen ◽  
Lei Lei Qiao ◽  
Li Hong Lan ◽  
...  

Magnetic cassava starch microspheres have been prepared by means of the method of precipitation magnetization, cassava starch as raw material adsorbing or embedding Fe3O4, many influence factors on magnetic cassava starch iron rate such as pH, reaction time, stirring speed, ratio of Fe+3 to Fe+2, reaction temperature also investigated in this paper. On the base above research, we preliminary got the optimal conditions on the synthesis of magnetic cassava starch microspheres.


2011 ◽  
Vol 239-242 ◽  
pp. 1118-1122 ◽  
Author(s):  
Ping Ke Yan ◽  
Bin Wang ◽  
Yu Juan Gao

In this paper, nesquehonite whiskers were synthesized by low-temperature aqueous solution method, and the impacts of reaction temperature, reaction time and surfactant dosage and other factors on the maximum whisker length and high aspect ratios of nesquehonite whiskers were also investigated. Results showed that under the conditions that the reaction temperature was 40 – 50 °C the reaction time was 50 – 60min and the amount of surfactant dosage was 1% (by mass), high aspect ratios nesquehonite whisker products can be synthesized. On this basis, growth mechanism of the nesquehonite whiskers was discussed.


2011 ◽  
Vol 183-185 ◽  
pp. 1110-1113
Author(s):  
Yuan Bo Huang ◽  
Yun Wu Zheng ◽  
Hao Feng ◽  
Zhi Feng Zheng ◽  
Ying Zi Jiang

The liquefaction of corncob in polyhydric alcohols was investigated by using sulfuric acid as a catalyst. Results showed that the best liquefaction could be obtained with residue percent of 4.5% under the conditions with the corncob/polyhydric alcohols mass ratio of 1/5, reaction temperature of 150°C, reaction time of 60 min, catalyst amount of 3% (based on the weight of corncob), PEG 400/glycerin mass ratio of 7/3 in the polyhydric alcohols, respectively. The liquefied liquid products had acid number of 18.9 mg KOH/g and hydroxyl number of 616.3mg KOH/g, respectively.


Sign in / Sign up

Export Citation Format

Share Document