acid number
Recently Published Documents


TOTAL DOCUMENTS

588
(FIVE YEARS 149)

H-INDEX

25
(FIVE YEARS 3)

Energies ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 450
Author(s):  
Andrea Maria Rizzo ◽  
David Chiaramonti

As with all transport modes, the maritime sector is undergoing a drastic transition towards net zero, similar to the path in which Aviation is already engaged through global decarbonization programs such as CORSIA for the International Civil Aviation Organization, or the Emission trading Scheme of the European Union). Maritime indeed shares with Aviation a common element: the difficulty of shifting to electric in the short to medium term. Therefore, the use of sustainable fuels represents the main and only relevant option in this timeframe. As sustainable biofuels will be used as blend components in the case of large-scale deployment, it is necessary to investigate the behavior of bio- and fossil-based fuels when mixed in various percentages, in particular for low quality products such as HTL (HydroThermal Liquefaction) and fast pyrolysis oils from lignocellulosic biomass and waste. Biocrude from subcritical hydrothermal liquefaction of undigested sewage sludge, produced at reaction conditions of 350 °C and 200 bar in a continuous HTL pilot scale unit, was manually mixed at 70 °C with residual marine fuel (low-sulphur type F-RMG-380 per ISO 8217) at two different nominal biocrude shares, respectively 10 wt.% and 20 wt.% in the mixture. While the former blend resulted in the technically complete dissolution of biocrude in the fossil component, the latter sample formed biocrude agglomerates and only partial dissolution of the biocrude aliquot in marine fuel could be achieved (calculated between 14–16 wt.%). The blend with 10 wt.% of SS biocrude in the mixture resulted in compliance with limits of total acid number (TAN), inorganics (in particular vanadium, sodium, silicon and aluminum) and sulphur content, while only the ash content was slightly above the limit.



2022 ◽  
Vol 9 (12) ◽  
pp. 201-207
Author(s):  
Yoel Pasae ◽  
Medris Ranak ◽  
Lyse Bulo ◽  
Eda Lolo Allo ◽  
Liberthin Palulullungan ◽  
...  

Biodiesel is a type of alternative fuel to replace diesel. Refined Bleached Deodorized Palm Oil (RBDPO) is a raw material that has the potential to be processed into biodiesel because of its abundant availability and easy to obtain. The focus of this research is to carry out the biodiesel production process using a mini biodiesel plant with a capacity of 50 liters/batch, and the catalyst used is NaOH. The results showed that the portable factory can produce biodiesel with a yield of 90.86%. The characteristics of the biodiesel produced were analyzed and the following values were obtained: density 0.89 g/mL, viscosity 4.69 CSt, acid number 1.68 mg KOH/g, and saponification number 179.52 mg KOH/g.



2021 ◽  
Vol 19 (2) ◽  
pp. 134-143
Author(s):  
Hendra Budi Sungkawa ◽  
Wahdaniah Wahdaniah ◽  
Herlinda Djohan

The processed oil from the coconut plant is generally understood as coconut oil. A method is required to produce a product with a higher oil extraction rate and is able to reduce the water content and free fatty acids in the coconut oil production. It is also necessary to add substances that can delay or prevent fat oxidation reactions by generating substances in the form of antioxidants. The method that can be implemented is the enzymatic method employing the bromelain enzyme in a pineapple with the addition of an antioxidants substance from the kesum  leaf. The objective of this research is to describe the quality of coconut oil after the addition of pineapple (ananas comosus) and kesum leaves (polygonus minus) extracts. The parameters for describing the quality of the oil are the organoleptic test, the degree of acidity, the oil extract rate, the peroxide number, the saponification number, and the acid number. This research is a quasi-experiment. The samples in this research were coconut oil without the addition of pineapple fruit extract, coconut oil with the addition of pineapple fruit extract without the addition of kesum leaves, and coconut oil with the addition of pineapple fruit extract and kesum leaves as much as 20gr, 30gr and 40gr. Based on the statistical results of the linear regression test, it was discovered that p-value = 0.000 <0.05, so it was concluded that there was an effect of the addition of pineapple fruit and leaves of kesum on acid number content with an effect of 76.4% on the acid number, 71.4% on the peroxide number, and 81.5% to the saponification number. It is recommended to test the water content, free fatty acids, and iodine number.



Vestnik MGTU ◽  
2021 ◽  
Vol 24 (4) ◽  
pp. 396-407
Author(s):  
L. I. Voitsekhovskaya ◽  
Ye. V. Franko ◽  
S. B. Verbytskyi ◽  
Yu. I. Okhrimenko

Mechanically deboned poultry meat is a valuable protein containing raw material widely used for the production of meat products. However, it does not have a high resistance to oxidation; therefore, various antioxidants including those of natural origin are used in its composition. The article provides information on the advisability of using rosemary extract and dihydroquercetin to stabilize lipids and interrupt hydrolytic and chain oxidative processes in mechanically deboned poultry meat. The permissible storage time for mechanically deboned poultry meat using the rosemary extract and dihydroquercetin in a chilled state is 96 hours. Research has been carried out on the oxidative processes of the fatty complex of mechanically deboned poultry meat during the refrigerated storage period. Antioxidants prevent the accumulation of peroxides: in the samples with their use, the peroxide number reaches critical values on 6-7 day of storage, without their use - on 3 day of storage. For all samples, a gradual increase in the acid number has been observed; however, for samples without antioxidants its values reach a critical level on the 4 day of storage, with the use of antioxidants - on the 7 day. The active formation of secondary oxidation products has begun from the second day of storage and reached the limit of permissible values in samples without antioxidants after 3 days of storage. In samples with antioxidants, the thiobarbituric number reaches a critical value on the 6 day. It has also been shown that the use of antioxidants contributes to the preservation of sensorial indicators (colour, odour) improving the quality of products. The efficiency of using the rosemary extract and dihydroquercetin as inhibitors of the oxidation of mechanically deboned poultry meat has been confirmed.



2021 ◽  
Vol 15 (2) ◽  
pp. 170
Author(s):  
Danang Tri Hartanto

Rosin is a natural resin from the coniferous tree sap, which separated from its oil content (terpenes). Rosin is brittle. Therefore modifications are needed to improve its mechanical properties. The main content of rosin is abietic acid which has a carboxylic group, so it can form an ester group when reacted with polyhydric alcohol (polyalcohol) such as glycerol. The research aimed to study the kinetics of the esterification reaction between the hydroxyl group in glycerol and the carboxylic group in abietic acid from rosin at various reaction temperatures and reactant compositions. This reaction is carried out in a three-neck flask at atmospheric pressure without a catalyst. The reaction temperatures used were 180˚C, 200˚C, and 220˚C, and the ratio of rosin and glycerol was 1:1, 1:3, and 1:5. The reaction kinetics calculations were analyzed with acid number data over the reaction time using three different models. The calculations showed that this reaction involves positioning a hydroxyl group on glycerol, which the primary and secondary hydroxyl groups contribute to forming a rosin ester (glycerolabietate). The rate of reaction constants of primary hydroxyl of glycerol and abietic acid were in the range 6.25x10-4 - 3.90x10-3 g/(mgeq.min), while reaction rate constants of secondary hydroxyl and abietic acid were in the range 1.06x10-5 - 1.15x10-4 g/(mgeq.min). FTIR analysis showed a change in the hydroxyl, carboxylate, and ester groups which were assigned by a shift of wavenumber and a difference of intensity at 3200-3570 cm-1, 1697.36 cm-1, and 1273.02 cm-1.



2021 ◽  
Vol 14 (1) ◽  
pp. 355
Author(s):  
Nina Bruun ◽  
Juho Lehmusto ◽  
Jarl Hemming ◽  
Fiseha Tesfaye ◽  
Leena Hupa

Used cooking oils (UCOs) have a high potential as renewable fuels for the maritime shipping industry. However, their corrosiveness during storage and usage are some of the concerns yet to be investigated for addressing compatibility issues. Thus, the corrosion of steels and copper exposed to the UCOs was studied through the immersion of metal rods for different periods. The changes on the rod surfaces were analyzed with a scanning electron microscope (SEM). After the immersion, the copper concentration dissolved in the bio-oils was measured using inductively coupled plasma-optical emission spectrometry (ICP-OES). The free fatty acids and glycerides were analyzed using gas chromatography with flame ionization detection (GC-FID). The acid number (AN), water concentration, as well as density and kinematic viscosity of the bio-oils were determined with standard methods. The UCOs with the highest water content were corrosive, while the oils with lower water concentrations but higher ANs induced lower corrosion. After mixing two different UCOs, the metal corrosion decreased with an increasing concentration of the oil with lower corrosive properties. The lower corrosion properties were most likely due to the monounsaturated fatty acids, e.g., oleic acid in oils. These acids formed a barrier layer on the rod surfaces, thereby inhibiting the permeation of oxygen and water to the surface. Even adding 0.025 wt% of tert-butylamine decreased the corrosivity of UCO against polished steel rod. The results suggested that mixing several oil batches and adding a suitable inhibitor reduces the potential corrosive properties of UCOs.



2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Azif Afandi ◽  
Lindia Riani ◽  
Yanna Syamsuddin ◽  
Zuhra Zuhra

Biodiesel is synthesized through a transesterification reaction with the help of a catalyst and generally uses a homogeneous catalyst. Heterogeneous catalysts can be synthesized from waste biomass such as avocado peel through a calcination. The purpose of this study was to examine the effect of variations in calcination temperature (550, 650, and 750oC) on the performance of the catalyst for biodiesel production and to analyze the effect of differences in the amount of catalyst (4, 6, 8, and 10% by weight of oil) used in the transesterification process on biodiesel yield. The catalysts were characterized by XRD, SEM-EDX, and FTIR. The results of the characterization of the catalyst showed that the dominant active phase of the catalyst was potassium (K). The highest biodiesel yield was obtained when using avocado peel ash as a catalyst which was calcined at a temperature of 650oC and using 6% catalyst by weight of oil. In the transesterification reaction the composition of the biodiesel product was analyzed using GC-MS and resulted that the palmitic acid was the most abundant composition in biodiesel. The biodiesel products produced were characterized for its density, viscosity, and acid number and have met the standard of SNI 7182:2015.



Polymers ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 4380
Author(s):  
Janis Rizikovs ◽  
Daniela Godina ◽  
Raimonds Makars ◽  
Aigars Paze ◽  
Arnis Abolins ◽  
...  

Global sustainability challenges prompt the world to modify its strategies and shift from a fossil-fuel-based economy to a bio-resources-based one and to the production of renewable biomass chemicals. Depolymerized suberinic acids (SA) were considered as an alternative resource to develop bio-polyols that can be further used in polyurethane (PU) material production. Birch (Betula pendula) outer bark was used as a raw material to obtain the SA, extracted with ethanol, and depolymerized with potassium hydroxide ethanol solution. By acidifying the filtrate to pH 5.0, 3.0, and 1.0 and drying it at 50 °C and 130 °C, 12 different SA potential feedstocks were obtained and characterized using chemical (total phenolics content, solubility in DMSO, acid, hydroxyl, and saponification number) and instrumental analytical methods (GC-MS, SEC-RID, DSC, and FTIR). Several bio-polyols were synthesized from the SA sample acidified to pH 1 and dried at 130 °C. Acid number and hydroxyl number values, the apparent viscosity and moisture content were measured. It was concluded that SA have a high enough saponification and acid value to investigate the polyol synthesis route via the esterification reaction. Moreover, SA had OH groups in their structure, which can be exploited for PU material development. The majority of SA compounds had relatively low molecular weight with <1300 Da that are suited for bio-polyol synthesis applied for rigid PU foam development. The synthesized bio-polyols had high hydroxyl number values necessary for bio-polyols to be used for rigid PU foam production.



2021 ◽  
pp. 64-67
Author(s):  
Людмила Витальевна Ванина ◽  
Артём Валерьевич Яицких ◽  
Ольга Владимировна Волкова ◽  
Дмитрий Сергеевич Степаненко

Приведены результаты изменения показателя кислотного числа жира (КЧЖ) продовольственного зерна пшеницы урожаев 2015 и 2018 гг. при длительном лабораторном хранении в условиях пониженных (+10 °С), умеренных (+20 °С), повышенных (+30 °С) температур и стандартной влажности для зерна пшеницы (не выше 14 %). Доказана возможность использования этого показателя для установления сроков безопасного хранения и годности зерна. Для определения норм свежести и годности продовольственного зерна пшеницы по нормам значения КЧЖ, разработанным ранее для пшеничной муки, были отобраны 35 проб зерна пшеницы с широким диапазоном значений КЧЖ и произведены лабораторные помолы муки высшего сорта. Установлена взаимосвязь показателя КЧЖ муки после созревания от показателя КЧЖ исходного зерна. По результатам статистической обработки полученной зависимости авторам удалось определить нормы свежести и годности продовольственного зерна пшеницы, которые составили 29 мг КОН на 1 г жира и 50 мг КОН на 1 г жира соответственно. The results of changes in the indicator of the acid number of fat (FAV) of food grain of wheat of the harvests of 2015 and 2018 are presented during long-term laboratory storage under conditions of low (+10 °C), moderate (+20 °C), high (+30 °C) temperatures and standard humidity for wheat grain (not higher than 14 %). The possibility of using this indicator has been proven to establish the terms of safe storage and shelf life of grain. To determine the norm of freshness and shelf life of food grains of wheat according to the norms of the FAV value developed earlier for wheat flour, 35 samples of wheat grains with the FAV values of 9.1 to 53.4 mg KOH per 1 g of fat were taken and laboratory grinding of the premium flour was made. The relationship between the FAV index of flour after ripening and the FAV index of the original grain has been established. Based on the results of statistical processing of this relationship, the authors were able to determine the norms of freshness and shelf life of food grain of wheat, which amounted to 29 mg KOH per 1 g of fat and 50 mg KOH per 1 g of fat, respectively.



2021 ◽  
pp. 1-18
Author(s):  
Takaaki Uetani ◽  
Hiromi Kaido ◽  
Hideharu Yonebayashi

Summary Low-salinity water (LSW) flooding is an attractive enhanced oil recovery (EOR) option, but its mechanism leading to EOR is poorly understood, especially in carbonate rock. In this paper, we investigate the main reason behind two tertiary LSW coreflood tests that failed to demonstrate promising EOR response in reservoir carbonate rock; additional oil recovery factors by the LSW injection were only +2% and +4% oil initially in place. We suspected either the oil composition (lack of acid content) or the recovery mode (tertiary mode) was inappropriate. Therefore, we repeated the experiments using an acid-enriched oil sample and injected LSW in the secondary mode. The result showed that the low-salinity effect was substantially enhanced; the additional oil recovery factor by the tertiary LSW injection jumped to +23%. Moreover, it was also found that the secondary LSW injection was more efficient than the tertiary LSW injection, especially in the acid-enriched oil reservoir. In summary, it was concluded that the total acid number (TAN) and the recovery mode appear to be the key successful factors for LSW in our carbonate system. To support the conclusion, we also performed contact angle measurement and spontaneous imbibition tests to investigate the influence of acid enrichment on wettability, and moreover, LSW injection on wettability alteration.



Sign in / Sign up

Export Citation Format

Share Document