Wire Electrical Discharge Machining – High Speed VS Abrasive Waterjet - A Case Study

2011 ◽  
Vol 189-193 ◽  
pp. 4245-4255
Author(s):  
Shi Jin Zhang ◽  
Yu Qiang Wu ◽  
Yan Li Wang

Technological advancement, on the one hand, made Electrical Discharge Machining (EDM) much faster. One example of that is the presence of Wire Electrical Discharge Machining – High Speed (WEDM-HS) machine, which makes the material removal rate as high as 80 . On the other hand, it also made Abrasive Waterjet (AWJ) achieve much better quality surface and tighter tolerance. As a result, these two types of machining process have converged to the point where they can complement one another quite nicely in selected applications. However, it does not mean user may pick any one for their applications. The proper selection not only decreases the manufacturing costs but also achieves better quality. This paper focuses on comparing WEDM-HS with AWJ by actually cutting a special designed sample. Through comparison from several aspects which include dimension precision, surface roughness, cost, cutting time and surface damage, a proper selection guidance for regular user has been provided.

Author(s):  
Sadananda Chakraborty ◽  
Souren Mitra ◽  
Dipankar Bose

Precision machining characteristics with high-dimensional accuracy make the material more adaptable towards the applications. The present study employs the powder mixed wire electrical discharge machining process to machine Ti6Al4V alloy material. In spite of limited drawbacks and enhanced output in the powder mixed wire electrical discharge machining process, the present problem has been formulated for improving the machining efficiency of Ti6Al4V. The impact of suspended powder characteristics on responses, that is, material removal rate and surface roughness, is examined throughout the process. The current investigation also focuses on the interaction effect of machining constraints along with Al2O3 abrasive mixed dielectric to achieve economical machining output for the Ti6Al4V material. An effort has been presented to obtain optimal solutions using the different methodologies, namely response surface methodology, grey relation analysis, and particle swarm optimization. The study reveals that discharge energy is deeply influenced by the peak current and pulse off time followed by powder concentration in the powder mixed wire electrical discharge machining process. The maximum material removal rate of 6.628 mm3/min and average surface finish of 1.386 μm are the outcome of the present study for a set of optimal machining settings, that is, pulse off time ( Toff) of 7.247 μs, pulse on time ( Ton) of 30 μs, peak current ( Ip) of 2 A, and powder concentration of 4 g/L. Finally, the proposed model has been verified that the hybrid particle swarm optimization technique has the highest adequate capability to achieve maximum output. Thus, the approach offered an enhancement on performance measures of Ti6Al4V alloy in the powder mixed wire electrical discharge machining process.


2014 ◽  
Vol 592-594 ◽  
pp. 456-460
Author(s):  
S. Ramesh ◽  
N. Natarajan ◽  
Vijayan Krishnaraj ◽  
K. Sathish Kumar

Wire Electrical Discharge Machining (WEDM) is an very accurate non-traditional machining process for producing parts with accurate dimensions and complex shapes. The performance of WEDM is measured by evaluating the parameters like Material Removal Rate (MRR), Surface Roughness (Ra), cracks, voids, pores and recast layer. In this paper, an attempt is made to improve the machining performance by adding multi wall carbon nanotube (MWCNT) with dielectric fluid. The MRR, Ra and surface characteristics are compared with surface that is machined using dielectric fluid with and without MWCNT. The results show that addition of MWCNT improves the MRR and surface finish.


2016 ◽  
Vol 106 (06) ◽  
pp. 430-438
Author(s):  
K. Prof. Oßwald ◽  
D. Murnberger ◽  
T. Kappler ◽  
G. Sedlmayr

Diese Untersuchung beschäftigt sich mit einer in den westlichen Industrienationen kaum bekannten Variante des Drahterodierens. Es wird zunächst ein Überblick über die Merkmale der Technologie (beispielsweise Aufbau, verwendeter Draht, Prozessflüssigkeit) gegeben, die sich teilweise deutlich von der konventionellen Technik unterscheiden. Des Weiteren werden die Verläufe von Strom und Spannung des Prozesses gemessen sowie die gefertigten Werkstückoberflächen untersucht.   This study deals with a variant of Wire Electrical Discharge Machining that is barely known in western industrialized countries. An overview of this technology‘s characteristics (setup, wire, fluid) is given, some of which are significantly different from conventional wire EDM (Electro Discharge Machining) technology. Furthermore, current and voltage profiles of the HSWEDM (High Speed Wire Electrical Discharge Machining) pulses are analyzed as well as the machined work piece surfaces.


2011 ◽  
Vol 496 ◽  
pp. 247-252 ◽  
Author(s):  
Ruben Gil ◽  
J.A. Sánchez ◽  
N. Ortega ◽  
S. Plaza ◽  
B. Izquierdo ◽  
...  

Abstract. This paper analyses the technological capabilities of a novel rotary (EDM) electrical discharge machining process for the manufacturing of high aspect ratio cylindrical micro-components. The process is called Inverse Electrical Discharge Grinding (ISEDM). An experimental analysis has been carried out on high speed steel (tool steel Vanadis 23), using a conventional EDM machine and graphite electrode. The effect of pulse off-time, work piece final diameter and machining length on material removal rate, electrode wear ratio, radial accuracy and surface roughness has been quantified. From the study, optimum strategies that involve the use of different EDM regimes for achieving the optimum requirements can be defined. Micro-pins of 0.3 mm diameter with aspect ratio as high as 100:1 have been successfully manufactured.


2020 ◽  
Vol 8 (5) ◽  
pp. 3045-3052

Wire Electrical Discharge Machining (WEDM) is a widely used non-traditional machining process used for machining of hard and difficult-to-machine materials. Proper selection of machining parameters in WEDM is required for better output performance, such as Material Removal Rate (MRR), Wire Wear Rate (WWR) and Surface Roughness (SR) etc. In the present paper, Pulse ON time, Pulse OFF time, Peak Current, Spark Voltage, Wire Feed and Wire Tension were taken as the input parameters to optimize MRR, WWR and SR. A set of 27 experiments were performed as per Taguchi Design. A Fuzzy model has been proposed to select the optimum values of machining parameters. The proposed fuzzy model was found to predict the experimental values with more than 90 percent accuracy.


Sign in / Sign up

Export Citation Format

Share Document