Synthesis and Crystal Structure of 13-cis-Retinoate Aryl Derivatives

2011 ◽  
Vol 236-238 ◽  
pp. 3037-3040
Author(s):  
Wei Guo Yi ◽  
Dong Yan ◽  
Long Yong Xie ◽  
Jian Nan Xiang ◽  
Zhong Cao

A series of 13-cis-retinoate aryl derivatives were synthesized from 13-cis-retinoic acid and phenols or arylalcohol with dicyclohexylcarbodiimide (DCC) as reagent and 4-dimethylaminopyridine (DMAP) as catalyst. Their structures were characterized by1H,13C NMR, IR and MS. The crystal of 3a has been determined by single crystal X-ray diffraction analysis and its molecular structure has been confirmed. Compound 3a belongs to monoclinic system with space group P2 (1)/c, a = 22.235 (3) Å, b = 7.4117 (10) Å, c = 15.990 (2) Å, β = 109.253 (3) °, V = 2487.7 (6) Å3, Z = 4, R = 0.0613, ωR = 0.01437.

2003 ◽  
Vol 58 (5) ◽  
pp. 389-394 ◽  
Author(s):  
Alexander A. Trifonov ◽  
Mikhail N. Bochkarev ◽  
Herbert Schumann ◽  
Sebastian Dechert

Racemic trans-2-(9(H)-fluoren-9-yl)cyclohexanol, C13H9-cyclo-C6H10-OH (1), reacts with two equivalents of potassium naphthalenide in THF to give the dipotassium salt [C13H8-cyclo-C6H10-O]- K2(THF) (2). Recrystallization of 2 from pyridine affords the solvent free salt [C13H8-cyclo-C6H10- O]K2 (3). The reactions of LaI3(THF)4 with one equivalent of 2 or of YbI2(THF)2 with equimolar amounts of 2 produce the alkoxolanthanum diiodide (C13H9-cyclo-C6H10-O)LaI2(DME)2 (4) and the ytterbium dialkoxide (C13H9-cyclo-C6H10-O)2Yb(THF)0.5(5), respectively. [(Me3Si)2N]3Y reacts with three equivalents of 1 with elimination of hexamethyldisilazane and formation of the yttrium trialkoxide (C13H9-cyclo-C6H10-O)3Y (6). The compounds 2 to 5 were characterized by elemental analyses, 1H NMR, 13C NMR and IR spectra. The molecular structure of 4 was determined by single crystal X-ray diffraction.


2003 ◽  
Vol 2003 (3) ◽  
pp. 157-159 ◽  
Author(s):  
Lingqin Han ◽  
Yong Cui ◽  
Yan Li ◽  
Wen-Hua Sun ◽  
Jianlong Du ◽  
...  

Copper complexes bearing 2,6-bis(imino)phenoxy ligand were synthesised and characterised along with the single crystal X-ray diffraction analysis of complex 4.


1998 ◽  
Vol 53 (11) ◽  
pp. 1326-1328 ◽  
Author(s):  
T. Schaper ◽  
W. Preetz

By reaction of [B6H6]2- with (PPh3)3AgCl in dichloromethane the belt-shaped hypho-hexaborane adduct [(PPh3)2B6H10] is formed. The crystal structure of [(PPh3)2B6H10]·CH2Cl2 has been determined by single crystal X-ray diffraction analysis: orthorhombic, space group Pbnb with a = 9.804(3), b = 17.864(4), c = 21.334(2) Å, Z = 4.


2013 ◽  
Vol 803 ◽  
pp. 80-84
Author(s):  
Yu Qi Liu ◽  
Yong Yang ◽  
Rui Yang ◽  
Xiao Jun Xu

A novel metalorganic coordination polymer, namely [Co3(bpd)5.5(NCS)6(NH3)]n2H2O (1) (bpd=1,4-bis (4-pyridyl)-2,3-diaza-1,3-butadiene), has been synthesized and characterized by elemental analyses, infrared spectroscopy, and single-crystal X-ray diffraction. Compound 1 presents 2D[3,4,-connected 3-nodal net with the point symbol (4268210)(4462)(8210). In addition, four identical 2D single nets is interlocked with each other in parallel, thus directly leading to the formation of a polycatenated layer (2D2D).


2014 ◽  
Vol 70 (a1) ◽  
pp. C1138-C1138
Author(s):  
Chiaki Tsuboi ◽  
Kazuki Aburaya ◽  
Shingo Higuchi ◽  
Fumiko Kimura ◽  
Masataka Maeyama ◽  
...  

We have developed magnetically oriented microcrystal array (MOMA) technique that enables single crystal X-ray diffraction analyses from microcrystalline powder. In this method, microcrystals suspended in a UV-curable monomer matrix are there-dimensionally aligned by special rotating magnetic field, followed by consolidation of the matrix by photopolymerization. From thus achieved MOMAs, we have been succeeded in crystal structure analysis for some substances [1, 2]. Though MOMA method is an effective technique, it has some problems as follows: in a MOMA, the alignment is deteriorated during the consolidation process. In addition, the sample microcrystals cannot be recovered from a MOMA. To overcome these problems, we performed an in-situ X-ray diffraction measurement using a three-dimensional magnetically oriented microcrystal suspension (3D MOMS) of L-alanine. An experimental setting of the in-situ X-ray measurement of MOMS is schematically shown in the figure. L-alanine microcrystal suspension was poured into a glass capillary and placed on the rotating unit equipped with a pair of neodymium magnets. Rotating X-ray chopper with 10°-slits was placed between the collimator and the suspension. By using this chopper, it was possible to expose the X-ray only when the rotating MOMS makes a specific direction with respect to the impinging X-ray. This has the same effect as the omega oscillation in conventional single crystal measurement. A total of 22 XRD images of 10° increments from 0° to 220° were obtained. The data set was processed by using conventional software to obtain three-dimensional molecular structure of L-alanine. The structure is in good agreement with that reported for the single crystal. R1 and wR2 were 6.53 and 17.4 %, respectively. RMSD value between the determined molecular structure and the reported one was 0.0045 Å. From this result, we conclude that this method can be effective and practical to be used widely for crystal structure analyses.


2009 ◽  
Vol 64 (1) ◽  
pp. 141-144 ◽  
Author(s):  
Yong Nie ◽  
Thomas Oeser ◽  
Walter Siebert

The dimer [(η5-C5Me5)Ru(C3B2Me5)RhCl]2 (2) reacts with 1,2-bis(diphenylphosphino)ethane (dppe) to give the triple-decker complex [(η5-C5Me5)Ru(C3B2Me5)Rh- (dppe)Cl] (3). Its constitution follows from NMR and MS data, and a single-crystal X-ray diffraction study.


2011 ◽  
Vol 6 (11) ◽  
pp. 1934578X1100601
Author(s):  
Yang Li ◽  
Jun-Hui Zhou ◽  
Gui-Jun Han ◽  
Min-Juan Wang ◽  
Wen-Ji Sun ◽  
...  

The crystal structure of natural diterpenoid alkaloid ranaconitine isolated from Aconitum sinomontanum Nakai has been determined by single crystal X-ray diffraction analysis. The crystal presents a monoclinic system, space group C2 with Z = 4, unit cell dimensions a = 30.972(19) Å, b = 7.688(5) Å, and c = 19.632(12) Å. Moreover, the intermolecular O–H···O hydrogen bonds and weak π-π interactions play a critical role in expanding the dimensionality.


1988 ◽  
Vol 43 (1) ◽  
pp. 49-52 ◽  
Author(s):  
Hubert Schmidbaur ◽  
Jan Ebenhöch

Abstract Trimethylsilylethine (1) has been prepared from C2H2, sodium and Me3SiCl in anisole. The product can be converted into a Grignard reagent Me3SiC≡CMgCl using iPrMgCl. This reagent yields the compounds Me3SiC≡CSiH3, (Me3SiC≡C)2SiH2, (Me3SiC≡C)3SiH, and (Me3SiC≡C)4Si (2-5) when treated with equivalent amounts of H3SiBr, H2SiBr2, HSiCl3, or SiCl4. respectively. The new silanes have been characterized by NMR data. The crystal structure of (Me3SiC≡C)4Si has been determined by single crystal X-ray diffraction. It shows the expected tetrahedral geometry at he central silicon atom with four linear SiC≡CSi linkages.


1994 ◽  
Vol 49 (9) ◽  
pp. 1263-1266 ◽  
Author(s):  
A. Franken ◽  
W. Preetz

By electrochemical oxidation of [B6H6]2- in the presence of nitrite ions and of the base DBU in dichlorom ethane solution the μ-nitroso-bis(pentahydrohexaborate) [B6H5(NO)B6H5]3- ion is formed and can be isolated by ion exchange chromatography on diethylaminoethyl cellulose. The crystal structure of the Cs salt has been determined from single crystal X-ray diffraction analysis. Cs3[B6H5(NO)B6H5] is orthorhombic, space group Pnma with a = 16.2303(13), b = 12.245(6), c = 25.444(2) Å. The unit cell contains three crystallographically independent anions with nearly C2v symmetry but differently distorted B6 cages


1987 ◽  
Vol 65 (12) ◽  
pp. 2830-2833 ◽  
Author(s):  
David M. McKinnon ◽  
Peter D. Clark ◽  
Robert O. Martin ◽  
Louis T. J. Delbaere ◽  
J. Wilson Quail

3,5-Diphenyl-1,2-dithiolium-4-olate (1) reacts with aniline to form 1-phenylimino-2-phenylamino-3-phenylindene (3a). Under suitable conditions, 6-phenylbenzo[b]indeno[1,2-e]-1,2-thiazine is also formed. These structures are confirmed by alternative syntheses. The molecular structure of 3a has been determined by single crystal X-ray diffraction. Compound 3a crystallizes in the monoclinic space group C2/c with unit cell dimensions a = 20.777(3) Å, b = 6.130(3) Å, c = 31.327(3) Å, 3 = 99.59(1)°, and Z = 8. The structure was solved by direct methods and refined by least squares to a final R = 0.055. The molecular structure of 3a shows the three phenyl containing substituents to have the planes of their ring systems tilted between 40° and 60° from the plane of the indene system due to steric repulsions.


Sign in / Sign up

Export Citation Format

Share Document