Biological Clogging in Tangshan Sand Columns under Salt Water Intrusion by Sporosarcina pasteurii

2011 ◽  
Vol 250-253 ◽  
pp. 2040-2046 ◽  
Author(s):  
Cyprien Rusu ◽  
Xiao Hui Cheng ◽  
Meng Li

Salt Water intrusion is a recurrent phenomenon over the world. This study has purpose to find a new biological way to solve this problem. Sporosarcina Pasteurii, known for its application in biogrouting solutions, was injected into four experimental columns submitted to salt water injection. The bioremediated carbonation reaction was induced by injection of calcium chloride and urea during a three weeks period and results were observed by a new injection of salt water. The increase of salt concentration in the columns after biological treatment shows a slowing down of salt propagation after treatment.

Ground Water ◽  
1980 ◽  
Vol 18 (2) ◽  
pp. 147-151 ◽  
Author(s):  
B. K. Panigrahi ◽  
A. Das Gupta ◽  
A. Arbhabhirama

2016 ◽  
Author(s):  
Karin Ebert ◽  
Karin Ekstedt ◽  
Jerker Jarsjö

Abstract. Future sea level rise as a consequence of global warming will affect the world's coastal regions. Even though the pace of sea level rise is not clear, the consequences will be severe and global. Commonly the effects of future sea level rise are investigated for relatively vulnerable development countries; however, a whole range of varying regions need to be considered in order to improve the understanding of global consequences. In this paper we investigate consequences of future sea level rise along the coast of the Baltic Sea island of Gotland, Sweden, with the aim to fill knowledge gaps regarding comparatively well-suited areas in non-development countries. We study both the quantity of loss of infrastructure, cultural and natural values for the case of a two metre sea level rise of the Baltic Sea, and the effects of climate change on seawater intrusion in coastal aquifers, causing the indirect effect of salt water intrusion in wells. We conduct a multi-criteria risk analysis by using Lidar data on land elevation and GIS-vulnerability mapping, which gives formerly unimaginable precision in the application of distance and elevation parameters. We find that in case of a 2 m sea level rise, 3 % of the land area of Gotland, corresponding to 99 km2, will be inundated. The features most strongly affected are items of touristic or nature values, including camping places, shore meadows, sea stack areas, and endangered plants and species habitats. In total, 231 out of 7354 wells will be directly inundated, and the number of wells in the high-risk zone for saltwater intrusion in wells will increase considerably. Some values will be irreversibly lost due to e.g. inundation of sea stacks and the passing of tipping points for sea water intrusion into coastal aquifers; others might simply be moved further inland, but this requires considerable economic means and prioritization. With nature tourism being one of the main income sources of Gotland, monitoring and planning is required to meet the changes. Seeing Gotland in a global perspective, this island shows that holistic multi-feature studies of future consequences of sea level rise are required, to identify overall consequences for individual regions.


2018 ◽  
pp. 5-38
Author(s):  
S. F. Atkinson ◽  
G. D. Miller ◽  
D. S. Curry ◽  
S. B. Lee

Author(s):  
Talabi A. O ◽  
Ajayi C. A ◽  
Afolagboye L. O ◽  
Oyedele A. A ◽  
Ojo O. F ◽  
...  

Saltwater intrusion into the coastal aquifer has long been recognized as a major threat to groundwater quality around the world. Groundwater evaluation of salt water intrusions in Igbokoda coastal area, southwestern Nigeria was carried out employing combined Horizontal Profiling and Vertical electrical sounding. Two traverses each with two sounding points were occupied. The result from the survey revealed 4 to 5 major layers comprising the unconsolidated silty sand and sandy clay (overburden), clayey zone, consolidated sand zone, partly intruded salt water intruded sandy clay zone and salt water intruded clay zone. The curves were the complex types KQH, KHA, QH and HKH curves. The overburden has resistivity that ranged from 253 to 1316.7Ω-m, thickness that ranged from 0.2 m to 7m. The clayey zone had resistivity of 846.0 Ω-m and thickness of 4m. The consolidated sand zone had resistivity that ranged from 2848.7 to 2865.7Ω-m and thickness that ranged between 4 and 21m. The partly intruded salt water zone is characterized by resistivity that varies between 18.4Ω-m and 93.0Ω-m and thickness of about 7-25m. The salt water intruded zone is characterized by resistivity that ranges between 4.1Ω-m and 9.7Ω-m and thickness of 4-48m. The partly-salt water intruded zones and salt water intruded zone were characterized with low resistivity while the high resistivity zones of consolidated sand layer constitute fresh water bearing zone that could serve as boreholes in the study area.


Sign in / Sign up

Export Citation Format

Share Document