Applications of Seawater Source Heat Pump in Buildings

2011 ◽  
Vol 280 ◽  
pp. 238-241 ◽  
Author(s):  
Qing Yan Li ◽  
Shi Jun You ◽  
Xue Jing Zheng

In the area of using renewable energy, promoting the efficiency of seawater source heat pump plays an important part. Several nontraditional technologies are can be used in the new seawater source heat pump system. As for the intake system, infiltration intake technology is introduced, which can increase the supply temperature of sea water and thus raise the efficiency of the system. And as for the terminals, a new-style PVC low temperature water flowing radiant heating (LTWFRH) system is used to match the temperature characteristics of seawater source. After the optimization of the whole system, the seawater source heat pump can be more efficiency and thus saving more energy, considering the energy conservation effect of seawater source heat pump itself.

Energies ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4850
Author(s):  
Hyeongjin Moon ◽  
Jae-Young Jeon ◽  
Yujin Nam

The building sector is an energy-consuming sector, and the development of zero-energy buildings (ZEBs) is necessary to address this. A ZEB’s active components include a system that utilizes renewable energy. There is a heat-pump system using geothermal energy. The system is available regardless of weather conditions and time, and it has attracted attention as a high-performance energy system due to its stability and efficiency. However, initial investment costs are higher than other renewable energy sources. To solve this problem, design optimization for the capacity of geothermal heat-pump systems should be performed. In this study, a capacity optimization design of a geothermal heat-pump system was carried out according to building load pattern, and emphasis was placed on cost aspects. Building load patterns were modeled into hospitals, schools, and apartments, and, as a result of optimization, the total cost over 20 years in all building load patterns was reduced.


2016 ◽  
Vol 138 (4) ◽  
Author(s):  
Maarten G. Sourbron ◽  
Nesrin Ozalp

With reducing energy demand and required installed mechanical system power of modern residences, alternate heat pump system configurations with a possible increased economic viability emerge. Against this background, this paper presents a numerically examined energy feasibility study of a solar driven heat pump system for a low energy residence in a moderate climate, where a covered flat plate solar collector served as the sole low temperature heat source. A parametric study on the ambient-to-solarfluid heat transfer coefficient was conducted to determine the required solar collector heat transfer characteristics in this system setup. Moreover, solar collector area and storage tank volume were varied to investigate their impact on the system performance. A new performance indicator “availability” was defined to assess the contribution of the solar collector as low temperature energy source of the heat pump. Results showed that the use of a solar collector as low temperature heat source was feasible if its heat transfer rate (UA-value) was 200 W/K or higher. Achieving this value with a realistic solar collector area (A-value) required an increase of the overall ambient-to-solarfluid heat transfer coefficient (U-value) with a factor 6–8 compared to the base case with heat exchange between covered solar collector and ambient.


2017 ◽  
Vol 181 ◽  
pp. 738-745
Author(s):  
Răzvan Calotă ◽  
Alina Girip ◽  
Anica Ilie ◽  
Lucian Cîrstolovean

2021 ◽  
Vol 289 ◽  
pp. 05005
Author(s):  
Ivan Sokolov ◽  
Artem Ryzhenkov ◽  
Elizaveta Tyabut

The climatic conditions in Moscow limit to a certain extent the utilization of renewable energy sources for heat supply. Long heating period, relatively low average daily sunshine hours during heating period, and low outside temperatures act as barriers to realising the full potential of renewable energy sources. The paper presents an evaluation of feasibility and effectiveness of using various renewable energy sources in the heat supply system of Block 23 of the National research university «MPEI». The system arrangement for heat supply of the building with renewable energy sources is described. Experimental data have been obtained on the basis of this system. The calculated time dependences of building heat consumption and heat pump system (HPS) outputs are given. In addition, for the air-source heat pump system, the dependence on the outdoor temperature is given. Values of HPS efficiency indices are also presented. A comparative analysis of the efficiency of air-source HPS and liquid-to-liquid HPS with a geothermal circuit in winter conditions is carried out.


2020 ◽  
Vol 85 (771) ◽  
pp. 361-370
Author(s):  
Mingzhe LIU ◽  
Toshiyuki HINO ◽  
Ryozo OOKA ◽  
Ke WEN ◽  
Wonjun CHOI ◽  
...  

2014 ◽  
Vol 953-954 ◽  
pp. 136-143
Author(s):  
Jin Shun Wu ◽  
Yue Bo Hu ◽  
De Zhi Hu ◽  
Hong Wei Liu

In winter,Many families use air source heat pump because of the low evaporation temperature of the system, resulting in lower heating efficiency of system. To solve this problem, the low temperature solar assisted hot water was added to the project which is on the basis of air source heat pump, and the system has been tested. After analysis of the collection efficiency of solar collectors at low temperatures and comparative analysis of the temperature cycle, pressure, energy consumption of the low-temperature solar-assisted systems and air source heat pump system, the optimal collector temperature and law of heat pump refrigerant cycle changes of the system were obtained. Theoretically, comparative analysis of low temperature air source heat pumps and solar hot water secondary air source heat pump compression ratio and COP. It gives the key parameters affecting the compression ratio and COP, pointing out ways to improve the heat pump COP. Finally, a key measure to improve the thermal performance of the unit system is proposed, to provide a reference for future practical applications and research. Foreword Air source heat pump in ambient air contains rich low grade solar potential as a source of heat, it has inexhaustible characteristics [1] . The main reason for restricting the use of air source heat pump in northern area of our country is when the outdoor air temperature is low in winter, the outdoor coil frost severe heating efficiency air source heat pump is greatly reduced. Martinez suggested experimental study on the application of solar radiant floor heating systems , solar water temperature is 50-60°C, low efficiency, especially when overcast snow lower system efficiency [2] .In view of the outdoor coil frosting problem, direct expansion solar assisted heat pump water heater system using the proposed by Li Yuwu, from a certain extent alleviated the problem of heat in winter for coil winter fros, improving the heating coefficient and improved the operating characteristics of the unit. However, this system requires the direct absorption of heat in air tube, and the specific heat of air is small, difficult to heat storage, illumination by solar radiation impact, unstable system operation [3]. Based on the above issues, for the low-level office building , the new rural residential , this study presents low temperature solar auxiliary air source heat pump system , the device uses low-temperature solar hot water heat pump system as low , both full use of solar energy , but also eliminates the original system frost problems and improve the efficiency of solar collectors and heat set to improve the evaporation temperature of the evaporator , thereby increasing the compression ratio of the heat pump unit .


Sign in / Sign up

Export Citation Format

Share Document