A Novel CuO-TiO2 Composite Photocatalyst and its Degradation of Methyl Orange under UV Irradiation

2011 ◽  
Vol 295-297 ◽  
pp. 1129-1132 ◽  
Author(s):  
Shi De Wu ◽  
You Qi Zhu ◽  
Chao Li ◽  
Ying Liang Wei

A novel CuO-TiO2 composite photocatalyst was prepared by a redox process coupling with sol-gel method. The morphology and structure of the as-prepared samples were studied by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Photocatalytic activity of the CuO-TiO2 composite photocatalyst was evaluated in terms of the degradation of Methyl orange (MO) in aqueous solution under UV light irradiation. The results show that the as-prepared composite consisted of monoclinic-phase CuO-nanotubes and TiO2 nanoparticles, in which TiO2 nanoparticles were dramatically decorated on the CuO-nanotubes, exhibits a high catalytic activity to decolorize MO. According to the experimental results, 1.27wt % was the optimal loading for CuO-doped TiO2 photocatalyst.


2011 ◽  
Vol 374-377 ◽  
pp. 956-959
Author(s):  
Li Yun Yang ◽  
Gui Peng Feng ◽  
Yong Cai Zhang

ZnO2 nanorods were synthesized via hydrothermal treatment of 2ZnCO3•3Zn(OH)2 powder in 30 mass% H2O2 aqueous solution at 170 °C for 12 h, and characterized by means of X-ray diffraction, transmission electron microscopy and UV–vis diffuse reflectance spectra. Besides, the photocatalytic activity of the as-synthesized ZnO2 nanorods was tested for the degradation of methyl orange in distilled water under UV light irradiation.



2010 ◽  
Vol 148-149 ◽  
pp. 1204-1207
Author(s):  
Jing Hu ◽  
Ming Guo Ma ◽  
Jian Zhang Li

The Zn/Sn-composite oxide nanogranules were synthesized via a simple hydrothermal method, and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The results show that the hydrothermal temperature significantly influences the morphology, microstructure, and composition of the as-prepared samples. And the nano-sized ZnO/Zn2SnO4 exhibited high photocatalytic activities on the degradation of methyl orange (MO) under ultraviolet (UV) light irradiation.



2009 ◽  
Vol 620-622 ◽  
pp. 671-674
Author(s):  
Hui Hui Li ◽  
Yu Hua Wang

This paper aims at the investigation of photocatalytic properties of titanium dioxide coatings covering on the surfaces of long blue-emitting afterglow CaAl2O4:Eu2+, Nd3+ elaborated by a sol-gel method. Morphologies and microstructures of the coatings were observed mainly by transmission electron microscopy (TEM) and analyzed by X-ray diffraction (XRD). The photocatalytic behavior of the TiO2-base surfaces was evaluated by the degradation of methyl orange (MO) solution. It suggested that a layer of TiO2 film mounted on the phosphor particles successfully. Also, the TiO2 coatings had remained its photocatalytic role on the as-prepared sample even after the light source was removed. The inner long blue-emitting afterglow had released blue afterglow after removing light source and allowed for reactive TiO2 surfaces to be held for the removal of methyl orange.



NANO ◽  
2018 ◽  
Vol 13 (05) ◽  
pp. 1850056 ◽  
Author(s):  
Yugan He ◽  
Qi Yan ◽  
Xiaoyu Chang ◽  
Meiying Zhu ◽  
Weiwei Wang ◽  
...  

A TiO2 photocatalyst with peony-like microstructures and a large percentage of exposed {001} facets was synthesized using a facile solvethermal method. The peony-like TiO2 was obtained using HF as a capping agent, TiCl4 as the precursor and ethanol as the solvothermal agent. The parameters which influence the mophology and formation mechanism of the products including the HF concentration, the reaction time and temperature and the solvothermal solvent, were investigated. The samples were characterized using field emission scanning electron microscopy, transmission electron microscopy, X-ray diffraction and N2 adsorption and desorption analysis. As the reaction time or reaction temperature increased, the morphology TiO2 changed from hexagonally assembled microspheres to peony-like microflowers which were composed of stacks of ultrathin nanosheets. The other reaction parameters also play a crucial role in the formation of the TiO2 microstuctures. Photocatalytic experiments showed that the synthesized TiO2 outperformed Degussa P25 in the photodegradation of methelene blue under a very weak UV light irradiation (power: 8[Formula: see text]W, light intensity: 0.4[Formula: see text]mW[Formula: see text]cm[Formula: see text]).



2010 ◽  
Vol 663-665 ◽  
pp. 187-190 ◽  
Author(s):  
Yu Hui Zhang ◽  
Ji Xin Su ◽  
Xiao Peng Wang ◽  
Qi Pan ◽  
Wen Qu

Based on X-ray diffraction results, the gallery height of modified Mg3Al-LDH was expanded to 9.6Å from the original 4.8Å, indicating that the H3PW12O40 was indeed inserted into the hydroxide layers. Moreover, the results of FT-IR spectra proved the Keggin structure of PW11O397- species. The resulting material showed a high activity of degradation of methyl orange in the presence of H2O2 and UV light irradiation.



2020 ◽  
Vol 2020 ◽  
pp. 1-9 ◽  
Author(s):  
D. K. Calvo Ramos ◽  
M. Vega González ◽  
R. A. Esparza Muñóz ◽  
J. Santos Cruz ◽  
F. J. De Moure-Flores ◽  
...  

Titanium dioxide (TD) and graphene oxide (GO) were synthesized by sol-gel and improved Hummers method, respectively. This study shows the results of the incorporation through four different conditions (sol-gel, sol-gel and ultrasonic, annealed, and UV radiation, C1 to C4, respectively). It was observed that a homogeneous incorporation of TD on sheets of GO was obtained satisfactorily. The composites of TiO2/GO were characterized using different techniques such as X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), scanning transmission electron microscopy (STEM), energy dispersive X-ray spectroscopy (EDS), Raman spectroscopy, and infrared spectroscopy (IR). The photocatalytic activity of the composites was determined from the degradation of the dye azo tartrazine using UV and solar radiation. The best incorporation of TD nanoparticles on GO was obtained with condition C3 (thermal incorporation method) at a temperature of 65°C. This shows a uniformity in the size and shape of the TD as well as an excellent adherence to the sheet of GO. This addition is accomplished by ionic bonding in the presence of electrostatic Coulomb forces. The C3 composite degraded the tartrazine dye using UV radiation and sunlight. With the latter, the degradation time was three times faster than using UV light.



Author(s):  
Abubakar Hamisu ◽  
Umar Ibrahim Gaya ◽  
Abdul Halim Abdullah

Sol-gel mesoporous titanium dioxide powders have been synthesized from chitosan and/or hexadecyltrimethylammonium bromide (HDTMA) and characterized using x-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), ultraviolet-visible (UV-vis) spectroscopy, thermogravimetric analysis (TGA), differential thermal analysis (DTA) and N2 adsorption-desorption measurements. The photocatalytic performance of the synthesized meso-TiO2 powders was optimized based on the central composite design (CCD) of methyl orange (MO) degradation under UV light irradiation. The maximum MO degradation was 62.3% over a period of 60 min. Oxides produced using the binary chitosan and HDTMA template (C,H-TiO2) exhibited the relatively higher surface area (99.5 m2/g), smaller crystal size (12.78 nm), narrower band-gap energy (2.92 eV) and higher photocatalytic rate constant (0.0112 min–1) than as those from chitosan (C/TiO2) or HDTMA (H/TiO2) as the template.



2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
J. L. Aguilar Salinas ◽  
J. R. Pacheco Aguilar ◽  
S. A. Mayén Hernández ◽  
J. Santos Cruz

The photocatalytic activity of semiconductors is increasingly being used to disinfect water, air, soils, and surfaces. Titanium dioxide (TiO2) is widely used as a photocatalyst in thin films, powder, and in mixtures with other semiconductors or metals. This work presents the antibacterial effects of TiO2and light exposure (at 365 nm) onPseudomonas aeruginosaATCC 27853. TiO2powder was prepared from a mixture of titanium isopropoxide, ethanol, and nitric acid using a green and short time sol-gel technique. The obtained gel annealed at 450°C was characterized by X-ray diffraction, Raman spectroscopy, ultraviolet-visible spectroscopy, diffuse reflectance, scanning electron microscopy, and transmission electron microscopy. The nanocomposite effectively catalyzed the inactivation ofPseudomonas aeruginosa. Following 90 minutes exposure to TiO2and UV light, logarithm of cell density was reduced from 6 to 3. These results were confirmed by a factorial design incorporating two experimental replicates and two independent factors.



2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Jarupat Sungpanich ◽  
Titipun Thongtem ◽  
Somchai Thongtem

The degradation of methylene blue (MB) dye by tungsten oxide (WO3) photocatalyst synthesized by the 200°C conventional-hydrothermal (C-H) and 270 W microwave-hydrothermal (M-H) methods and commercial WO3was studied under UV light irradiation for 360 min. The photocatalysts were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy, Raman spectrophotometry, and UV visible spectroscopy to determine phase, morphology, vibration mode, and optical property. The BET analysis revealed the specific surface area of 29.74, 37.25, and 33.56 m2/g for the C-H WO3nanoplates, M-H WO3nanoplates, and commercial WO3nanorods, respectively. In this research, the M-H WO3nanoplates have the highest photocatalytic efficiency of 90.07% within 360 min, comparing to the C-H WO3nanoplates and even commercial WO3nanorods.



2020 ◽  
Vol 16 ◽  
Author(s):  
Nimisha Jadon ◽  
Gulzar Ahmad Bhat ◽  
Manoharmayum Vishwanath Sharma ◽  
Harendra Kumar Sharma

Background: The study focuses on the synthesis of chitosan/ Fe2O3 nanocomposite, its characterization and application in methyl orange dye degradation. Methods: The synthesized chitosan/ Fe2O3 nanocomposite was characterized with Powder X-Ray Diffraction, Fourier Transformation Infrared Spectroscopy (FTIR), Transmission Electron Microscopy (TEM) and UV-Vis Spectroscopy. Results: The characterization showed that the Fe2O3nanoparticles were embedded in the polymer matrix of chitosan. The size of the Fe2O3nanoparticles were less than 10nm and the crystallite size was 1.22 nm.The synthesized chitosan/ Fe2O3nanocomposite was tested for methyl orange degradation using different parameters such as effect of contact time, effect of dose, effect of concentration and effect of pH for the degradation of methyl orange dye in aqueous solution.The Fruendlich, Langmuir and Temkin isotherm studies were also conducted for adsoption of methyl orange on Chitosan/ Fe2O3nanocomposite. Conclusion: The study indicated that the synthesized chitosan/Fe2O3 nanocomposite had the potential of degrading methyl orange dye up to 75.04% under the set condition in this experiment which indicate that Chitosan/ Fe2O3 nanocomposite is a viable option that can be used for the degradation of methyl orange dye.



Sign in / Sign up

Export Citation Format

Share Document