Photocatalytic Properties of TiO2-Coatings Mounted on CaAl2O4:Eu2+, Nd3+ without Light Source

2009 ◽  
Vol 620-622 ◽  
pp. 671-674
Author(s):  
Hui Hui Li ◽  
Yu Hua Wang

This paper aims at the investigation of photocatalytic properties of titanium dioxide coatings covering on the surfaces of long blue-emitting afterglow CaAl2O4:Eu2+, Nd3+ elaborated by a sol-gel method. Morphologies and microstructures of the coatings were observed mainly by transmission electron microscopy (TEM) and analyzed by X-ray diffraction (XRD). The photocatalytic behavior of the TiO2-base surfaces was evaluated by the degradation of methyl orange (MO) solution. It suggested that a layer of TiO2 film mounted on the phosphor particles successfully. Also, the TiO2 coatings had remained its photocatalytic role on the as-prepared sample even after the light source was removed. The inner long blue-emitting afterglow had released blue afterglow after removing light source and allowed for reactive TiO2 surfaces to be held for the removal of methyl orange.

1997 ◽  
Vol 12 (6) ◽  
pp. 1441-1444 ◽  
Author(s):  
L. Armelao ◽  
A. Armigliato ◽  
R. Bozio ◽  
P. Colombo

The microstructure of Fe2O3 sol-gel thin films, obtained from Fe(OCH2CH3)3, was investigated by x-ray diffraction (XRD), transmission electron microscopy (TEM), and Raman spectroscopy. Samples were nanocrystalline from 400 °C to 1000 °C, and the crystallized phase was haematite. In the coatings, the α–Fe2O3 clusters were dispersed as single particles in a network of amorphous ferric oxide.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Sanja Ćulubrk ◽  
Željka Antić ◽  
Vesna Lojpur ◽  
Milena Marinović-Cincović ◽  
Miroslav D. Dramićanin

Herein we presented hydrolytic sol-gel synthesis and photoluminescent properties of Eu3+-doped Gd2Ti2O7pyrochlore nanopowders. According to Gd2Ti2O7precursor gel thermal analysis a temperature of 840°C is identified for the formation of the crystalline pyrochlore phase. Obtained samples were systematically characterized by powder X-ray diffraction, scanning and transmission electron microscopy, and photoluminescence spectroscopy. The powders consist of well-crystalline cubic nanocrystallites of approximately 20 nm in size as evidenced from X-ray diffraction. The scanning and transmission electron microscopy shows that investigated Eu3+-doped Gd2Ti2O7nanopowders consist of compact, dense aggregates composed entirely of nanoparticles with variable both shape and dimension. The influence of Eu3+ions concentration on the optical properties, namely, photoluminescence emission and decay time, is measured and discussed. Emission intensity as a function of Eu3+ions concentration shows that Gd2Ti2O7host can accept Eu3+ions in concentrations up to 10 at.%. On the other hand, lifetime values are similar up to 3 at.% (~2.7 ms) and experience decrease at higher concentrations (2.4 ms for 10 at.% Eu3+). Moreover, photoluminescent spectra and lifetime values clearly revealed presence of structural defects in sol-gel derived materials proposing photoluminescent spectroscopy as a sensitive tool for monitoring structural changes in both steady state and lifetime domains.


2011 ◽  
Vol 295-297 ◽  
pp. 1414-1417
Author(s):  
Zhi Fang Zhang ◽  
Fang Yan Du ◽  
Xiang Rong Ma

The nanocrystals Ce0.5Zr0.5O2 solid solutions with various morphologies and crystal structures have been synthesized via a modified sol-gel method assisted with a template. Aerosol OT and/or ionic liquids ([MMIM]Cl] and [BMIM]Cl]) was used as a template. The characterization results of the X-ray diffraction, transmission electron microscopy and N2 adsorption at 77 K indicate that the physical properties of the solid solutions were significantly affected by the templates used and the calcination temperatures. The Ce0.5Zr0.5O2 calcined at 773 K possessed bimodal mesopores, narrow pore size distributions, and tetragonal phase.


2010 ◽  
Vol 123-125 ◽  
pp. 631-634 ◽  
Author(s):  
Yu Ping Tong ◽  
Shun Bo Zhao ◽  
Feng Lan Li ◽  
Chang Yong Li

La1.6Ln0.4Zr2O7 (Ln= La, Nd, Dy, Er) nanocrystals were prepared by stearic acid combustion method. The samples were characterized by powder X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET) nitrogen adsorption, transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM). The photocatalytic activity of La1.6Ln0.4Zr2O7 was evaluated by the photocatalytic degradation of methyl orange. The order of the photocatalytic activity was as following: La1.6Er0.4Zr2O7>La1.6Dy0.4Zr2O7> La1.6Nd0.4Zr2O7> La2Zr2O7. La1.6Dy0.4Zr2O7 showed that the best photocatalytic activity and the reason may be related to the big magnetic moment of Er3+. It may be considered largely to be caused by the partly occupied Ln4f levels. Since the solid samples have the same structure, the reason that La1.6Er0.4Zr2O7 shows the highest reactivity may be related to lowest Ln4f level of Er3+.


2020 ◽  
Vol 2020 ◽  
pp. 1-9 ◽  
Author(s):  
D. K. Calvo Ramos ◽  
M. Vega González ◽  
R. A. Esparza Muñóz ◽  
J. Santos Cruz ◽  
F. J. De Moure-Flores ◽  
...  

Titanium dioxide (TD) and graphene oxide (GO) were synthesized by sol-gel and improved Hummers method, respectively. This study shows the results of the incorporation through four different conditions (sol-gel, sol-gel and ultrasonic, annealed, and UV radiation, C1 to C4, respectively). It was observed that a homogeneous incorporation of TD on sheets of GO was obtained satisfactorily. The composites of TiO2/GO were characterized using different techniques such as X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), scanning transmission electron microscopy (STEM), energy dispersive X-ray spectroscopy (EDS), Raman spectroscopy, and infrared spectroscopy (IR). The photocatalytic activity of the composites was determined from the degradation of the dye azo tartrazine using UV and solar radiation. The best incorporation of TD nanoparticles on GO was obtained with condition C3 (thermal incorporation method) at a temperature of 65°C. This shows a uniformity in the size and shape of the TD as well as an excellent adherence to the sheet of GO. This addition is accomplished by ionic bonding in the presence of electrostatic Coulomb forces. The C3 composite degraded the tartrazine dye using UV radiation and sunlight. With the latter, the degradation time was three times faster than using UV light.


2004 ◽  
Vol 848 ◽  
Author(s):  
Lidia Armelao ◽  
Davide Barreca ◽  
Gregorio Bottaro ◽  
Andrea Caneschi ◽  
Claudio Sangregorio ◽  
...  

ABSTRACTThis work is focused on the sol-gel synthesis of pure and Ca-doped LaCoO3 nanopowders. The samples were prepared starting from methanolic solutions of cobalt (II) acetate (Co(CH3COO)2·4H2O), lanthanum (III) nitrate (La(NO3)3·6H2O) and calcium (II) acetate (Ca(CH3COO)2·H2O). After solvent evaporation, the obtained powders were dried under vacuum and subsequently treated in air up to 1273 K. The system evolution under thermal annealing was studied by X-ray Diffraction (XRD) and Transmission Electron Microscopy (TEM), while the chemical composition was analyzed by X-ray Photoelectron (XPS) and X-ray Excited Auger electron (XE-AES) spectroscopies. The temperature and field dependence of the magnetic properties of the Ca-doped samples were investigated, and compared to those of the corresponding pure LaCoO3 powders.


2004 ◽  
Vol 19 (5) ◽  
pp. 1504-1508 ◽  
Author(s):  
Bin-Siang Tsai ◽  
Yen-Hwei Chang ◽  
Yu-Chung Chen

Nano-grained phosphors of Eu3+-doped MgGa2O4 crystallites were prepared by sol-gel technique. The characterization and optical properties of luminescent MgGa2O4:Eu3+ powders have been investigated. The dried sol-gel powders were calcined in air at different temperature from 600 to 1000 °C for 5 h. The x-ray diffraction profiles showed that the MgGa2O4:Eu3+ powders began to crystallize around 600 °C and formed stable MgGa2O4 phase in the temperature range of 600–900 °C. The transmission electron microscopy morphology observations revealed that the fired powders exhibit small grain size less than 20 nm. In the PL studies, under ultraviolet (394 nm) excitation, the calcined powders emitted bright red luminescence (615 nm, 5D0→7F2), and the powders fired at 900 °C were found to have the maximum photoluminescence intensity. The quenching concentration of Eu3+ in MgGa2O4 crystallites was also indicated to be about 5∼6 mol%.


2011 ◽  
Vol 295-297 ◽  
pp. 1129-1132 ◽  
Author(s):  
Shi De Wu ◽  
You Qi Zhu ◽  
Chao Li ◽  
Ying Liang Wei

A novel CuO-TiO2 composite photocatalyst was prepared by a redox process coupling with sol-gel method. The morphology and structure of the as-prepared samples were studied by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Photocatalytic activity of the CuO-TiO2 composite photocatalyst was evaluated in terms of the degradation of Methyl orange (MO) in aqueous solution under UV light irradiation. The results show that the as-prepared composite consisted of monoclinic-phase CuO-nanotubes and TiO2 nanoparticles, in which TiO2 nanoparticles were dramatically decorated on the CuO-nanotubes, exhibits a high catalytic activity to decolorize MO. According to the experimental results, 1.27wt % was the optimal loading for CuO-doped TiO2 photocatalyst.


Sign in / Sign up

Export Citation Format

Share Document