Experiments and Simulation of Elastic-Plastic Deformation in Thin Wall Part Milling

2011 ◽  
Vol 314-316 ◽  
pp. 482-486 ◽  
Author(s):  
Ai Jun Tang ◽  
Zhan Qiang Liu

Aircraft components are mostly made by aluminum alloy as thin wall types. These parts are usually end milled to required thicknesses and tight tolerances in specific areas. The thin wall parts are difficult to machine because they are easy to vibrate and deformed due to their lower rigidity. This paper proposes a new elastic-plastic deformation model which is suitable for prediction of machining deformations of end milled thin wall parts. The theoretical deformation model is established on the basis of the equations of Von Kármán. The effect of bending springback is also taken into account. The part deformations are simulated using FE analysis and Matlab. Milling experiments on a CNC machining center are performed. The experimental results show that the deformations for the peripheral milling of thin wall parts can be captured with very high accuracy using the proposed elastic-plastic deformation prediction model.

2013 ◽  
Vol 345 ◽  
pp. 321-324
Author(s):  
Ai Jun Tang ◽  
Hai Long Ma ◽  
Zhan Qiang Liu

Aircraft components are mostly made by aluminum alloy as thin wall types. These parts are usually end milled to required thicknesses and tight tolerances in specific areas. The thin wall parts are difficult to machine because they are easy to vibrate and deformed due to their lower rigidity. This paper proposes a new elastic-plastic deformation model which is suitable for prediction of machining deformations of end milled thin wall parts. The theoretical deformation model is established on the basis of the equations of Von Kármán. The part deformations are simulated using FE analysis and Matlab. The results show that the deformations for the end milling of thin wall parts can be captured with very high accuracy using the proposed elastic-plastic deformation prediction model.


2011 ◽  
Vol 697-698 ◽  
pp. 129-132 ◽  
Author(s):  
Bing Han ◽  
Cheng Zu Ren ◽  
X.Y. Yang ◽  
Guang Chen

The deflection of Aluminum alloy thin-wall workpiece caused by the milling force leads to additional machining errors and reduces machining accuracy. In this paper, a set of experiments of milling thin-wall workpiece were carried out to study the deflection of thin-wall workpiece. The workpieces, with different types of material and different thicknesses, were machined on CNC machining center. The deflections of workpiece were measured by a three-coordinate measuring machine. Effects of Aluminum alloy material and thickness on deflection are discussed based on the experimental data.


2019 ◽  
Vol 20 (3) ◽  
pp. 99-106
Author(s):  
Florin Chifan ◽  
◽  
Constantin Luca ◽  
Mihaita Horodinca ◽  
Catalin Gabriel Dumitras ◽  
...  

Author(s):  
Márcio Maciel da Silva ◽  
Michel Lenhago Beneducci Afonso ◽  
Stephanny Lohanny Nunes Silva ◽  
Fernanda Christina Teotonio Dias Troysi ◽  
Ítalo Bruno dos Santos ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document