Rolling Force in Hot Rolling of Large Rings

2011 ◽  
Vol 314-316 ◽  
pp. 539-542
Author(s):  
Min Wang ◽  
Chun Zhang

For hot rolling of large rings, determination of rolling force plays an important role in designing, choosing and optimizing of processing plan and rolling mill. The average shape parameter of the deformation zone of ring rolling is presented, and a reliable coupled thermo-mechanical three-dimensional (3D) finite element (FE) model for the process is developed. The effects of processing parameters on rolling force during hot rolling of titanium alloy large rings with different sizes are explored and the results obtained show that different rings follow a similar trend: increasing the relative reduction or rotational speed of the driver roll, or decreasing the feed rate of the idle roll is beneficial to a reduction in rolling force.

2012 ◽  
Vol 433-440 ◽  
pp. 558-562
Author(s):  
Min Wang

How to effectively reduce spread is an important subject in the area of ring rolling. In the paper, a reliable coupled thermo-mechanical three-dimensional (3D) finite element (FE) model for hot rolling of large rings is developed. The relationship between spread and the equivalent shape parameters of the deformation zone is discussed. Variations of spread with relative reduction Rr during hot rolling of titanium alloy large rings with different sizes are analyzed and compared using FE simulation. The main results reveal that (1) the spread in a ring exhibits an axisymmetric distribution after the first revolution of the ring. (2) the peak spread appears in the inside or outside layer of a ring, and the minimum spread is found in the middle layer. (2) as Rr increases, the spread increases and the end-plane quality of the ring reduces.


2011 ◽  
Vol 189-193 ◽  
pp. 2651-2654
Author(s):  
Min Wang

For hot rolling of titanium alloy large rings, rolling force is very important for designing, choosing and optimizing of processing plan and rolling mill. In the paper, the average shape parameter of the deformation zone of ring rolling is presented first, and then a reliable coupled thermo-mechanical three-dimensional (3D) finite element (FE) model for the process is developed. Finally, influences of the blank outer radius R0 and inner radius r0 on rolling force are discussed and compared for exploring blank thickness effects. The main results show that decreasing the blank thickness by decreasing R0 or increasing r0 leads to a saving of rolling force, while R0 has a predominant effect than r0.


2012 ◽  
Vol 433-440 ◽  
pp. 563-566 ◽  
Author(s):  
Min Wang

For hot ring rolling of large parts, rolling force and moment are of significance for designing, choosing and optimizing of rolling die and mill. In the study, the average shape parameter of the deformation zone of ring rolling is presented first, and then a reliable coupled thermo-mechanical three-dimensional (3D) finite element (FE) model for the process is developed. Finally, the influences of geometric factors on rolling force and moment during hot ring rolling of titanium alloy large parts are explored. The main results show that increasing the ratio of driver roll radius to idle roll radius or decreasing the average radius of blank is beneficial to a saving of rolling force and moment, while the axial height of blank has a little influence.


2011 ◽  
Vol 213 ◽  
pp. 487-491
Author(s):  
Min Wang

For hot rolling of large rings, the friction between a ring and rolls plays an important role in maintaining the stable forming of the process and quality of ring parts. The reasonable range of friction coefficient is determined analytically based on the stable forming condition, and a reliable coupled thermo-mechanical three-dimensional (3D) finite element (FE) model for the process is developed. The effect of friction on hot rolling of titanium alloy large rings with different sizes are explored, and the results obtained show that as friction coefficient increases, different rings have similar variation law: less metal flows to the axial direction of a ring and the spread distribution at the end plane of a ring becomes more uniform; the strain and temperature distributions tend to be less uniform; rolling force and rolling moment have little change.


2011 ◽  
Vol 189-193 ◽  
pp. 2092-2095
Author(s):  
Min Wang

For ring rolling without axial rolls, how to effectively suppress axial spread has become an important subject. In the paper, a reliable coupled thermo-mechanical three-dimensional (3D) finite element (FE) model for hot rolling of large rings is developed. Spread evolution of titanium alloy large rings with different sizes are explored and compared based the developed model. The main results show that (1) the spread in a ring takes on an axisymmetric distribution after the first revolution of the ring. (2) with the equivalent ratio of feed amount per revolution decreasing, the peak spread transfers from the outer layer to the inner layer for rings with different sizes.


Author(s):  
Cristiano S. de Aguiar ◽  
Jose´ Renato M. de Sousa ◽  
Gilberto Bruno Ellwanger ◽  
Elisabeth de Campos Porto ◽  
Cipriano Jose´ de M. Ju´nior ◽  
...  

This paper presents a numerical based study on the undrained load capacity of a typical torpedo anchor embedded in a purely cohesive isotropic soil using a three-dimensional nonlinear finite element (FE) model. In this model, the soil is simulated with solid elements capable of representing its nonlinear physical behavior as well as the large deformations involved. The torpedo anchor is also modeled with solid elements and its complex geometry is represented. Moreover, the anchor-soil interaction is addressed with contact finite elements that allow relative sliding with friction between the surfaces in contact. Various analyses are conducted in order to understand the response of this type of anchor when different soil undrained shear strengths, load directions as well as number and width of flukes are considered. The obtained results point to two different failure mechanisms: one that mobilizes a great amount of soil and is directly related to its lateral resistance; and a second one that mobilizes a small amount of soil and is related to the vertical resistance of the soil. Besides, the total contact area of the anchor seems to be an important parameter in the determination of its load capacity and, consequently, the increase of the undrained shear strength and the number of flukes and/or their width significantly increases the load capacity of the anchor.


1970 ◽  
Vol 92 (2) ◽  
pp. 453-459 ◽  
Author(s):  
H. A. Kuhn ◽  
A. S. Weinstein

A method is presented for the determination of the lateral distribution of pressure in thin strip rolling. A simplified three-dimensional analysis of elastic deformation of the rolls is developed for use in the method. Pressure in the roll edge contact regions (in underface rolling), as well as in the roll-strip contact region, is considered. In the case of four-high, planetary, and Sendzimir-type mills, the lateral distribution of pressure between the work roll and backup rolls is also found. Calculated results indicate lateral pressure distributions which have peak values at each edge of the strip with a minimum at the center. The degree of this nonuniformity depends on roll geometry and configuration. Partition of the total rolling force between roll-strip contact and roll edge contact in underface rolling is also determined. Since interroll heat transfer is dependent on contact area, and hence, pressure, the results can also aid the determination of lateral temperature distributions in the rolls. In addition, the method is potentially useful for a study of the influence of roll geometry and configuration on strip shape.


2014 ◽  
Vol 597 ◽  
pp. 266-271
Author(s):  
Wen Meng ◽  
Guo Qun Zhao ◽  
Yan Jin Guan

A FE model of radial conical ring rolling process with a closed die structure on the top and bottom part of driven roll (RCRRCDS) process was set up based on ABAQUS/Explicit software. The effect of the initial temperature of conical ring blank on equivalent plastic strain (PEEQ) and temperature distribution of rolled ring, average rolling force and average rolling moment was investigated. The results indicated that with the increase of the initial temperature of ring blank, the PEEQ distribution of rolled ring becomes uniform at first and then less uniform; the temperature distribution gradually becomes homogeneous; and both average rolling force and average rolling moment decrease. When the initial temperature of ring blank is 925°C, the PEEQ distribution of rolled ring is most uniform; the temperature distribution of rolled ring is relatively uniform; the average rolling force and average rolling moment are relatively smaller.


2007 ◽  
Vol 561-565 ◽  
pp. 1813-1817
Author(s):  
Hong Wei Li ◽  
He Yang ◽  
Zhi Chao Sun ◽  
M. Wang ◽  
Lan Yun Li

Material behaviors of anisotropy and rate sensitivity affect cold ring rolling greatly. So, a self-developed incremental model of rate dependent crystal plasticity (RDCP) is utilized to forecast the deformation characteristics of this forming process based on a 3D FE model under ABAQUS/Explicit environment. The results show that the model of RDCP captures material behaviors of anisotropy and rate sensitivity better in this forming process by the comparison with the model of J2 plasticity; with the decrease of rate sensitivity coefficient, the forming process becomes more unstable with smaller rolling force and growth in ring radial direction; with the increase of feed rate of idle roll, the deformation of ring becomes more even while the rolling force becomes larger.


Sign in / Sign up

Export Citation Format

Share Document