The Effect of the Initial Temperature of Ring Blank on Conical Ring Rolling Process

2014 ◽  
Vol 597 ◽  
pp. 266-271
Author(s):  
Wen Meng ◽  
Guo Qun Zhao ◽  
Yan Jin Guan

A FE model of radial conical ring rolling process with a closed die structure on the top and bottom part of driven roll (RCRRCDS) process was set up based on ABAQUS/Explicit software. The effect of the initial temperature of conical ring blank on equivalent plastic strain (PEEQ) and temperature distribution of rolled ring, average rolling force and average rolling moment was investigated. The results indicated that with the increase of the initial temperature of ring blank, the PEEQ distribution of rolled ring becomes uniform at first and then less uniform; the temperature distribution gradually becomes homogeneous; and both average rolling force and average rolling moment decrease. When the initial temperature of ring blank is 925°C, the PEEQ distribution of rolled ring is most uniform; the temperature distribution of rolled ring is relatively uniform; the average rolling force and average rolling moment are relatively smaller.

2014 ◽  
Vol 599-601 ◽  
pp. 511-516
Author(s):  
Wen Meng ◽  
Guo Qun Zhao ◽  
Yan Jin Guan

As the needs of profiled rings continuously increase, studies about profiled ring rolling processes is becoming a hot problem. This paper established a FE model of hot ring rolling process of inner L-shaped ring based on ABAQUS/Explicit software. The reasonable value range of mandrel feed rate is determined at first. Then the deformation characteristics of rings are analyzed and compared in L-shaped ring rolling process under four different ring blank dimensions. Finally, for realizing a steady rolling process and obtaining good dimensions properties of rolled ring, an appropriate ring blank dimension is given.


2014 ◽  
Vol 2014 ◽  
pp. 1-18
Author(s):  
Wen Meng ◽  
Guoqun Zhao ◽  
Yanjin Guan

The plastic penetration condition and biting-in condition of a radial conical ring rolling process with a closed die structure on the top and bottom of driven roll, simplified as RCRRCDS, were established. The reasonable value range of mandrel feed rate in rolling process was deduced. A coupled thermomechanical 3D FE model of RCRRCDS process was established. The changing laws of equivalent plastic strain (PEEQ) and temperature distributions with rolling time were investigated. The effects of ring’s outer radius growth rate and rolls sizes on the uniformities of PEEQ and temperature distributions, average rolling force, and average rolling moment were studied. The results indicate that the PEEQ at the inner layer and outer layer of rolled ring are larger than that at the middle layer of ring; the temperatures at the “obtuse angle zone” of ring’s cross-section are higher than those at “acute angle zone”; the temperature at the central part of ring is higher than that at the middle part of ring’s outer surfaces. As the ring’s outer radius growth rate increases at its reasonable value ranges, the uniformities of PEEQ and temperature distributions increase. Finally, the optimal values of the ring’s outer radius growth rate and rolls sizes were obtained.


2011 ◽  
Vol 189-193 ◽  
pp. 2586-2592
Author(s):  
Jie Zhou ◽  
Xiao Tao Gong ◽  
Xiao Bing Yang ◽  
Wu Jiao Xu

Based on the platform ABAQUS, 3-D FEA model for ring rolling has been constructed to investigate the effect of drive roll rotation speed on the metal flow in the ring rolling process. It can be seen clearly that the axial metal flow in the outside diameter of the rolled ring increases with the increasing of drive roll rotation speed and with the decreasing of the feeding magnitude per revolution , which causes the increasing of fishtail coefficient FT and maximum spread coefficient and in turn makes the quality deterioration of end-plane in the rolled ring. The rolling force and rolling torque necessary to execute the rolling process are reduced when the drive roll rotation speed is elevated, which results in the lower requirement for the characteristic of force and energy in the rolling machine. Besides that, average equivalent plastic strain PEEQ also increases, which indicates the enhancement of plastic deformation and is beneficial to the improvement of the mechanical property of the formed ring. But one point that we should pay attention is that uneven deformation and possibility of the inner defects in the rolled ring might be increased with the increasing of the drive roll rotation speed.


2011 ◽  
Vol 421 ◽  
pp. 513-521
Author(s):  
Shi Biao Liu ◽  
Ke Lu Wang ◽  
Shi Qiang Lu ◽  
Xin Li ◽  
Xian Juan Dong

Radial-axial ring rolling is an important component of advanced manufacturing technology, but it has characteristics of high nonlinear on geometry and physics, so the radial-axial ring rolling process becomes very complex. In addition, the feeding mode of core roller has enormous influence on the quality of the rolled ring as well as the stability of the process. In this paper, a 3D rigid-plastic FE model of radial-axial ring rolling process is established, then three kinds of feed speed design ((1)constant of feed speed; (2)constant of feed in one rotary; (3)variation of feed speed)are offered. The difference of outer radius growth velocity, distribution of effective strain and temperature, rolling force, size of ring are analysised for the three kinds of feed methods. And, an optimized feed method is proposed base on analytic results, the optimized feed method can improve the quality of formed ring, and decrease the requirement of ring rolling mill.


2007 ◽  
Vol 561-565 ◽  
pp. 1875-1878 ◽  
Author(s):  
Yong Xing Hao ◽  
Lin Hua ◽  
Gui Shan Chen ◽  
Dao Ming Wang

Non-stability factors affect stability of radial ring rolling process, and lead to fluctuating of ring position. This decreases rolling precision. Evaluating stability of the process is very important. A stability evaluating method is proposed. The stability can be measured with the mean square root of sequence of oscillation of ring geometrical centerline displacement. Using ABAQUS/Explicit, the stability is analyzed. It is showed that guide-roll position angle has the significant effect to the stability. If guide-roll is located at the tangential position to the ring’s fringe, the stability will vary with the angle between two planes. One passes through axes of guide roll and ring blank, and another passes through axes of drive roll and ring blank. The stability is highest when guide roll is situated at the position angle of 100˚to 130˚at exit side of ring rolling mill.


2011 ◽  
Vol 264-265 ◽  
pp. 1776-1781 ◽  
Author(s):  
Nassir Anjami ◽  
Ali Basti

Although cold ring rolling (CRR) process is largely used in the manufacturing of profiled rings like bearing races, research on this purpose has been scant. In this study, based on a validated finite element (FE) model, CRR process is simulated regarding the variable and constant feed speeds of the mandrel roll which lead to constant and variable values of the ring's diameter growth rates respectively using a 3D rigid-plastic finite element method (FEM). Major technological problems involved in the process including plastic deformation behavior, strain distribution and its uniformity, Cockcroft and Latham damage field and final outer diameter of ring are fully investigated. The results of simulations would provide a good basis for process control especially feed speed controlled mills and guiding the design and optimization of both cold and hot ring rolling process.


2013 ◽  
Vol 773 ◽  
pp. 309-315 ◽  
Author(s):  
Lian Jie Li ◽  
Xiao Dong Luo ◽  
Yong Xiang Zhu

In this paper, a 3D elastic-plastic and coupled thermo-mechanical FE model of radial ring rolling of 6061 aluminum alloy is developed, and the hot rolling process with different the rotational speed of driver roll n is simulated by using the dynamic explicit code ABAQUS/Explicit. The influence laws of the rotational speed of driver roll on the uniformity of strain and temperature distribution (STD), fishtail coefficient, roll force, contact area and roll moment are revealed respectively. One optimum n is obtained, under which SDT is relatively uniform; meanwhile, another optimum n is obtained, under which the quality of end-plane of the rolled ring is the best. The result can provide a valuable guideline to research and optimum of the hot ring rolling of aluminum alloys.


2013 ◽  
Vol 762 ◽  
pp. 354-359 ◽  
Author(s):  
Thomas Henke ◽  
Gerhard Hirt ◽  
Markus Bambach

Ring rolling is an incremental bulk forming process. Hence, the process consists of a large number of alternating deformations and dwell steps. For accurate calculations of material flow and thus ring geometry and rolling forces in hot ring rolling processes, it seems necessary to consider material softening due to static and post dynamic recrystallization which could occur between two deformation steps. In addition, due to the large number of cycles, the modeling results, especially the prediction of grain size, can easily be affected by uncertainties in the input data. However, for small rings and ring material with slow recrystallization kinetics, the interpass times can be short compared to the softening kinetics and the effect of softening can be so small, that microstructure evolution and the description of the materials flow behavior can be de-coupled. In this paper, a semi-empirical JMAK-based model for a stainless steel (1.4301/ X5CrNi18-9/ AISI304) is presented and evaluated by the use of experiments and other investigations published in [1],[2]. Finite Element (FE) simulations of a ring rolling process with a high number of ring revolutions and thus multiple, incremental forming steps were conducted based on ring rolling experiments. The FE simulation results were validated with the experimentally derived rolling force and evolution of ring diameter. The microstructure evolution was calculated in a post processing step considering the investigated evolution of strain and temperature. In this calculation the interrelations between the fraction of dynamically recrystallized microstructure, the evolution of post-dynamically recrystallized microstructure and the final grain size have been considered. Both, the calculated final microstructure and the evolution of rolling force and ring geometry calculated stand in good agreement with the experimental investigations.


2006 ◽  
Vol 532-533 ◽  
pp. 141-144 ◽  
Author(s):  
Zhi Chao Sun ◽  
He Yang ◽  
Lan Yun Li

Guide rolls play an important role in controlling both the ring circularity and the stability of cold ring rolling process. However, it is difficult to predict and control the motion of the guide rolls due to the complexity of process associated with the coupled effects of multi-factors. In this paper, a reasonable controlling model of the guide rolls is proposed, and the functional relationship between the motion track of the guide rolls and their setup parameters and process ones is established, by which the guide rolls motion track can be determined. On this basis, a 3D-FE simulation model for cold ring rolling is developed under the ABAQUS software environment and the effects of the initial position and motion track of the guide rolls on the forming stability, ring circularity, rolling force, and oscillating are investigated. Taking the forming stability and ring circularity as objects, the optimum initial position and motion track of the guide rolls are obtained.


2011 ◽  
Vol 383-390 ◽  
pp. 2819-2826
Author(s):  
Ali Parvizi ◽  
Karen Abrinia

A generalized upper bound solution for the deformation of ring in the ring rolling process has been formulated. An admissible velocity field and strain rates are derived from the parametric definition of streamlines in the deformation zone. This new formulation was used to predict the upper bound on power. Minimizing the upper bound power with respect to neutral point position, the neutral point position and the rolling force were determined. Using the theory presented here, the variation of internal, shear, frictional and total powers with respect to ring revolution are discussed. Some of the results obtained from analysis were compared with experimental results.


Sign in / Sign up

Export Citation Format

Share Document