Application of Capillary Zone Electrophoresis in the Separation and Determination of the Tertiary Butylhydroquinone

2011 ◽  
Vol 361-363 ◽  
pp. 683-686
Author(s):  
Qian Xiang ◽  
Ying Gao

We describe the use of capillary zone electrophoresis (CZE) for the determination of tertiary butylhydroquinone (TBHQ) without derivatization or purification. The influences of buffer pH and voltage on the separation of TBHQ were studied. The internal standard method was used for the quantification of TBHQ. Amperometric detection was carried out at an applied potential of 0.80 V. The detection limit of TBHQ was found to be 10-6 M. Peak intensity varied linearly with TBHQ concentration from 10-4 to 5×10-6 M. The relative standard deviation (RSD) for peak intensity and migration time was in the range of 3.58–4.36% and 0.51–0.94%, respectively. The recovery of the method in food samples is 95.36% for TBHQ. The method developed is suitable for the routine analysis of synthetic phenolic antioxidant TBHQ in samples.

1997 ◽  
Vol 80 (6) ◽  
pp. 1308-1314 ◽  
Author(s):  
Wayne E Rae ◽  
Charles A Lucy

Abstract A capillary zone electrophoresis (CZE) method was developed to separate and determine chlorinated phenols in water and soil samples. A mixture of 16 chlorinated phenols was resolved in 25 min by using a 77 cm (70 cm to detector) × 75 μm fused silica capillary with 0.015M tetraborate/0.045M phosphate (pH 7.3) buffer at 22 kV. Calibration linearities for water samples in the low parts-permillion range were good (correlation coefficient > 0.99) for all solutes except p-chlorophenol. Average precision was 17% relative standard deviation. Typical detection limits were in the 200 μg/L range. Recoveries of chlorinated phenols from synthetic soil samples with methanol were quantitative.


2012 ◽  
Vol 7 ◽  
pp. ACI.S9940 ◽  
Author(s):  
Mohamed Salim ◽  
Nahed El-Enany ◽  
Fathallah Belal ◽  
Mohamed Walash ◽  
Gabor Patonay

A novel, quick, reliable and simple capillary zone electrophoresis CZE method was developed and validated for the simultaneous determination of sitagliptin (SG) and metformin (MF) in pharmaceutical preparations. Separation was carried out in fused silica capillary (50.0 cm total length and 43.0 cm effective length, 49 μm i.d.) by applying a potential of 15 KV (positive polarity) and a running buffer containing 60 mM phosphate buffer at pH 4.0 with UV detection at 203 nm. The samples were injected hydrodynamically for 3 s at 0.5 psi and the temperature of the capillary cartridge was kept at 25 °C. Phenformin was used as internal standard (IS). The method was suitably validated with respect to specificity, linearity, limit of detection and quantitation, accuracy, precision, and robustness. The method showed good linearity in the ranges of 10-100 μg/mL and 50-500 μg/mL with limits of detection of 0.49, 2.11 μm/mL and limits of quantification of 1.48, 6.39 μg/mL for SG and MF, respectively. The proposed method was successfully applied for the analysis of the studied drugs in their synthetic mixtures and co-formulated tablets without interfering peaks due to the excipients present in the pharmaceutical tablets. The method was further extended to the in-vitro determination of the two drugs in spiked human plasma. The estimated amounts of SG/MF were almost identical with the certified values, and their percentage relative standard deviation values (% R.S.D.) were found to be ≤1.50% (n = 3). The results were compared to a reference method reported in the literature and no significant difference was found statistically.


Sign in / Sign up

Export Citation Format

Share Document