Utilization Plan of Cooling and Heating Resources in Urban Sewage

2011 ◽  
Vol 374-377 ◽  
pp. 277-283
Author(s):  
Zhen Guo Lin ◽  
Yan Ling Guo ◽  
Su Yun Zhang

The cooling and heating resources contained in urban sewage have significant influence on the “energy conservation and emission reduction”. From the point of extensive utilization, the paper put forward the concept of sewage thermal-energy utilization plan, and discussed the types, goals, principles, content and steps of the plan. Selecting principles and flow-volume calculation method of flow nodes were also illustrated. The study results provide reference for industrialization of urban sewage thermal-energy resources application in construction.

Author(s):  
Napoleon Enteria ◽  
Hiroshi Yoshino ◽  
Akashi Mochida ◽  
Rie Takaki ◽  
Akira Satake ◽  
...  

The global problems of energy supply and demand, climatic change due to artificial global warming, and providing economical and clean human comfortable condition are a complex issue. These problems have become globally political, economical and technological in the center stage of global arena. Utilization of alternative energy resources which are clean and green, hand in hand with the development of alternative clean and green technologies can indeed reduce the global and environmental problems. This paper invasions the idea of harnessing the power of clean energy resources and of developing clean technology for the production of clean environmental conditions. Synergization of clean energy resources, clean technologies and production of clean environment is implemented through the thermally activated desiccant cooling system. The experimental facility is constructed which consists of thermal energy system, desiccant cooling system and the artificially controlled environmental conditions for experimental evaluation purposes. Preliminary experimental investigation is being undertaken to evaluate the performance of the thermal energy system and of the desiccant cooling system. Based on the results, thermal energy system is functioning to its expectations. However, the desiccant cooling system still needs improvement to optimize its cooling capacity. With this study, practical combination of clean energy utilization and of clean technology development for the production of clean environment is possible through proper design and implementation.


Thermo ◽  
2021 ◽  
Vol 1 (1) ◽  
pp. 63-76
Author(s):  
Mengxuan Yan ◽  
Dongxiao Wang ◽  
Chun Sing Lai ◽  
Loi Lei Lai

Microgrids have become increasingly popular in recent years due to technological improvements, growing recognition of their benefits, and diminishing costs. By clustering distributed energy resources, microgrids can effectively integrate renewable energy resources in distribution networks and satisfy end-user demands, thus playing a critical role in transforming the existing power grid to a future smart grid. There are many existing research and review works on microgrids. However, the thermal energy modelling in optimal microgrid management is seldom discussed in the current literature. To address this research gap, this paper presents a detailed review on the thermal energy modelling application on the optimal energy management for microgrids. This review firstly presents microgrid characteristics. Afterwards, the existing thermal energy modeling utilized in microgrids will be discussed, including the application of a combined cooling, heating and power (CCHP) and thermal comfort model to form virtual energy storage systems. Current trial programs of thermal energy modelling for microgrid energy management are analyzed and some challenges and future research directions are discussed at the end. This paper serves as a comprehensive review to the most up-to-date thermal energy modelling applications on microgrid energy management.


2020 ◽  
Vol 1684 ◽  
pp. 012009
Author(s):  
Y Sun ◽  
Z X Liu ◽  
M Li ◽  
Z T Zeng ◽  
Z X Zong ◽  
...  

2005 ◽  
Vol 9 (3) ◽  
pp. 15-23 ◽  
Author(s):  
Fajik Begic ◽  
Anes Kazagic

Along with the current processes of restructuring of Energy power system of Bosnia and Herzegovina, liberalization of the electricity market, and modernization of the existing power plants, Bosnia and Herzegovina must turn to the utilization of renewable resources in reason able dynamics as well. Respecting this policy, the initial Valuation of the potential of renewable erg resources in Bosnia and Herzegovina is per formed. The methodology of evaluation of wind energy utilization is presented in this paper, as well as some other aspects of utilization of the renewable energy resources in Bosnia and Herzegovina. Implementation of selected projects should improve sustainability of energy power production in Bosnia and Herzegovina, by reducing the total emission of carbon dioxide originated from energy power system of Bosnia and Herzegovina.


Energy is an essential component in supporting people’s daily lives and is a significant economical element in development of the country. The eventual depletion of conventional energy resources and their harmful impacts on environment as well as the rising energy costs and the limitations of new energy resources and technologies have pushed efficient energy management to the top of the agenda. But how the energy utilization can be managed? A simple answer to this is viable and real time metering, which enables calculation of run time energy consumption and obtaining the real-time as well as cumulative cost. In this research an Innovative hardware and IoT based solution to this problem is availed that could provide live information related to consumption of electricity by various appliances. The methodology used in this research is mainly based on a hardware tool named Elite 440 which is a meter and provides the data about various electrical parameters. This data so obtained is made visible on the dashboard in a user friendly. The data so visible includes various parameters like voltage, current, power factor etc. Also the data so obtained on the dashboard gets updated in each five minutes and simultaneously the cost gets updated which makes it real time monitoring System.


2020 ◽  
Vol 8 (2) ◽  
pp. 3-9
Author(s):  
E.A. Belyanovskaya ◽  
◽  
G.M. Pustovoy ◽  
A.I. Sklyarenko ◽  
M.P. Sukhyy ◽  
...  

The work is focused on the development of an effective algorithm for calculating the operational characteristics of a steamcompressive chilling machine with an adsorptive chilling unit, which involves a cold box, an adsorber, an evaporator and a condenser, water being used as a refrigerant. An algorithm for calculating the operating parameters of the adsorptive chilling unit has been developed, which includes the determination of the cooling capacity of the steam compressor refrigeration unit, the heat load on the condenser, the power consumed by the compressor, the coefficient of performance of the steam compressor refrigeration unit, as well as the calculation of the mass of water, the mass of the adsorbent, the refrigerating capacity, the coefficient of performance of the adsorptive chilling unit and the coefficient of useful energy utilization of a steam compressive chilling machine with an adsorption chilling unit. The chilling capacity and the coefficient of performance of the adsorption chilling unit are estimated under the operating conditions of a typical steam compression chilling machine. The crucial factors affecting the efficiency of the adsorptive chilling unit are analyzed. It has been established that the chilling capacity, the coefficient of performance of the adsorption refrigeration module and the energy efficiency of the installation are determined by the thermal load on the condenser, and, therefore, by the mass of water that is desorbed and evaporated. The coefficient of performance of the adsorption chilling unit and the efficiency of the steam compressor chilling machine with the adsorptive chilling unit are estimated to be 0.878 and 4.64. The criteria for the selection of adsorbents for the adsorption module are analyzed. The temperature of regeneration is determined by the temperatures in the condenser, and the limit adsorption affects the mass of the adsorbent and the size of the adsorber. A comparison of the efficiency of adsorptive chi l l ing uni t based on silicoaluminophosphates and composite adsorbents «silica gel – sodium acetate» is carried out. The prospects of using composites «silica gel – СН3СООNa» are shown. The optimal composition of the composite was established, which corresponds to the minimal size of the adsorber, (80% sodium acetate and 20% silica gel). The prospects of using adsorptive conversion of thermal energy for utilization of low-potential thermal energy during the operation of steam compressive chilling machine are shown. Keywords: adsorptive conversion of heat energy, composite adsorbent, steam compressive chilling unit, adsorption, adsorptive capacity.


Sign in / Sign up

Export Citation Format

Share Document