Soft Magnetic Composite Switched Reluctance Generator - Fabrication and Analysis

2011 ◽  
Vol 383-390 ◽  
pp. 5516-5521 ◽  
Author(s):  
R. Karthikeyan ◽  
K. Vijayakumar ◽  
R. Arumugam

The main objective of this paper is to investigate the suitability of Soft Magnetic Composite (SMC) material SOMOLOY1000 for a Switched Reluctance Generator (SRG) through electromagnetic, thermal and vibration characteristics employing extensive Finite Element Analysis. The fabrication aspects of Soft Magnetic Composite Switched Reluctance Generator (SMC-SRG) using preform material blanks utilizing indigenous machining process have been delineated. The static and transient electromagnetic characteristics have been obtained through the electromagnetic finite element analysis software MagNet6.22.1 while the thermal and vibration aspects have been studied through coupled field Finite Element Analysis employing the multi physics software ANSYS10 while the Impulse hammers excitation - free vibration test using RT Pro Photon data acquisition system facilitated the experimental determination of vibration characteristics. The study concludes that the advantages of less weight , low torque ripple, low eddy current losses, reduction in vibration level of stator structure coupled with the ability to maintain precise mechanical dimensional tolerance may present SMC-SRG a viable candidate in standalone wind energy conversion systems meant for rural and remote area electrification scheme.

Micromachines ◽  
2018 ◽  
Vol 9 (11) ◽  
pp. 578 ◽  
Author(s):  
Bingrui Lv ◽  
Guilian Wang ◽  
Bin Li ◽  
Haibo Zhou ◽  
Yahui Hu

This paper describes the innovative design of a three-dimensional (3D) motion device based on a flexible mechanism, which is used primarily to produce accurate and fast micro-displacement. For example, the rapid contact and separation of the tool and the workpiece are realized by the operation of the 3D motion device in the machining process. This paper mainly concerns the device performance. A theoretical model for the static performance of the device was established using the matrix-based compliance modeling (MCM) method, and the static characteristics of the device were numerically simulated by finite element analysis (FEA). The Lagrangian principle and the finite element analysis method for device dynamics are used for prediction to obtain the natural frequency of the device. Under no-load conditions, the dynamic response performance and linear motion performance of the three directions were tested and analyzed with different input signals, and three sets of vibration trajectories were obtained. Finally, the scratching experiment was carried out. The detection of the workpiece reveals a pronounced periodic texture on the surface, which verifies that the vibration device can generate an ideal 3D vibration trajectory.


Author(s):  
Md Mohiuddin ◽  
Asma Akther ◽  
Eun Byul Jo ◽  
Hyun Chan Kim ◽  
Jaehwan Kim

The present study investigates a film actuator made with dielectric cellulose acetate films separated by narrow spacers as a means of electrostatic actuation for potential haptic application. Fabrication process for the actuator is explained along with experiments conducted over a wide frequency range of actuation frequency. A valid finite element simulation of the actuator is made on the quarter section of the actuator by using full 3D finite elements. Vibration characteristics such as fundamental natural frequency, mode shape and output velocity in the frequency range for haptic feeling generation are obtained from the finite element analysis and compared with the experimental results. Experimental results demonstrate that the finite element model is practical and effective enough in predicting the vibration characteristics of the actuator for haptic application. The film actuator shows many promising properties like high transparency, wide range of actuation frequency and high vibration velocity for instance.


Sign in / Sign up

Export Citation Format

Share Document