Scttering of SH-Waves by Interface Semicircular Debonded Cylindrical Lining and Linear Cracks Originating at Edge of Lining

2011 ◽  
Vol 399-401 ◽  
pp. 2149-2154
Author(s):  
Jing Fu Nan ◽  
Hui Qi ◽  
Chun Xiang Zhao

The Green function and other complex functions were employed to study the problem of scatteing of SH wave by a interface semicircular debonded elastic lining of two-phase mediums and interface linear cracks originating at edge of lining. We divided the whole model into upper elastic half space with the semi-circular canyon and lower elastic half space with semi-circular lining hill.In lower half space. Semicircular debonded elastic lining is constructed by satisfing the continuous condition of displacement and stress on interface when upper half part and lower half part are conjoined,and linear cracks is constructed by using the method of crack incision, upper half part and lower half part are conjoined by method of “conjunction”.In the end some examples and results of dynamic stress intensify factor are given with discussions.

2015 ◽  
Vol 11 (3) ◽  
pp. 386-400 ◽  
Author(s):  
Rajneesh Kakar

Purpose – The purpose of this paper is to investigate the existence of SH-waves in fiber-reinforced layer placed over a heterogeneous elastic half-space. Design/methodology/approach – The heterogeneity of the elastic half-space is caused by the exponential variations of density and rigidity. As a special case when both the layers are homogeneous, the derived equation is in agreement with the general equation of Love wave. Findings – Numerically, it is observed that the velocity of SH-waves decreases with the increase of heterogeneity and reinforced parameters. The dimensionless phase velocity of SH-waves increases with the decreases of dimensionless wave number and shown through figures. Originality/value – In this work, SH-wave in a fiber-reinforced anisotropic medium overlying a heterogeneous gravitational half-space has been investigated analytically and numerically. The dispersion equation for the propagation of SH-waves has been observed in terms of Whittaker function and its derivative of second degree order. It has been observed that on the removal of heterogeneity of half-space, and reinforced parameters of the layer, the derived dispersion equation reduces to Love wave dispersion equation thereby validates the solution of the problem. The equation of propagation of Love wave in fiber-reinforced medium over a heterogeneous half-space given by relevant authors is also reduced from the obtained dispersion relation under the considered geometry.


2020 ◽  
Vol 36 (4) ◽  
pp. 497-506 ◽  
Author(s):  
Paeksan Jang ◽  
Yongguk Ri ◽  
Songchol Ri ◽  
Cholho Pang ◽  
Changson Ok

ABSTRACTInvestigation of SH wave scattering by inclusions in bi-material half space is an important issue in engineering. The purpose of this work is to study the dynamic response of a semi-circle inclusion embedded in bi-material half space surface by SH wave. Graf's addition theorem, Green function method and region-matching technique are used to determine the displacement fields in the bi-material half space and the inclusion. The distributions of dynamic stress concentration factor (DSCF) around the semi-circle inclusion are depicted graphically considering different material parameters. The results show that the frequency and the incidence angle of SH wave, the rigidities of the inclusion and bi-material half space, and the distance from the inclusion to the interface have a great effect on the distribution of DSCF around the inclusion.


2010 ◽  
Vol 163-167 ◽  
pp. 4265-4268
Author(s):  
Zhi Gang Chen

The dynamic stress concentration on quadratic and U-shaped cavities in half space, which are similar to the cross-section of the tunnels, is solved in this paper impacted by SH-wave. The analytical solution for the cavity in elastic half space is gained by the complex function method. In the complex plane, the scattering wave which satisfies the zero-stress condition at the horizontal surface can be constructed, the problem can be inverted into a set of algebraic equations to solve coefficients of the constructed scattering wave by least square method. For the earthquake-resistance researches, the numerical examples of the dynamic stress concentration around the quadratic and U-shaped cavities impacted by SH-wave are given. The influences of the dynamic stress concentration by the incident wave number and angle, the depth and shape of the cavity are discussed. It is showed that the interaction among the wave, the surface and the shallow buried tunnels should be cared in half space. In this situation, the dynamic stress concentration around the tunnel is greater obvious than the whole space.


1998 ◽  
Vol 120 (4) ◽  
pp. 343-348 ◽  
Author(s):  
C.-S. Yeh ◽  
T.-J. Teng ◽  
W.-I. Liao

The dynamic response of a massless rigid hemispherical foundation embedded in a uniform homogeneous elastic half-space is considered in this study. The foundation is subjected to external forces, moments, plane harmonic P and SH waves, respectively. The series solutions are constructed by three sequences of Lamb’s singular solutions which satisfy the traction-free conditions on ground surface and radiation conditions at infinity, automatically, and their coefficients are determined by the boundary conditions along the soil-foundation interface in the least square sense. The fictitious eigen-frequencies, which arise in integral equation method, will not appear in the numerical calculation by the proposed method. The impedance functions which characterize the response of the foundation to external harmonic forces and moments at low and intermediate frequencies are calculated and the translational and rocking responses of the foundation when subjected to plane P and SH waves are also presented and discussed in detail.


Sign in / Sign up

Export Citation Format

Share Document