Formation of Decarbonization Layer and its Effect on Corrosion Resistance of Zirconia Graphite Materials

2011 ◽  
Vol 399-401 ◽  
pp. 336-342
Author(s):  
Fan Qian ◽  
Hong Xia Li ◽  
Guo Qi Liu

The effect of graphite content on formation of decarbonization layer and corrosion resistance of zirconia graphite materials were studied by the corrosion test in induction furnace, and the effect of decarbonization layer on corrosion of zirconia graphite materials was also analysed by the kinetic models for the corrosion of SEN in mold, the result show that: (1) Thickness of decarbonization layer of slag line is decreasing with the increase of graphite content. When the mold fluxes for high carbon steel is used, decarbonization layer is thin and graphite content has little effect on corrosion resistance of zirconia graphite materials, and 10wt%graphite is better. When the mold fluxes for low carbon steel is used, decarbonization layer is thick and 14wt% graphite is the best. (2) Corrosion of zirconia graphite materials in mold is characterized by the features of consecutive reaction:original layer (k1) decarbonization layer (k2) corrosion layer . If k1<<k2, there is no decarbonization layer forming and decarbonization is the key step for the corrosion; If k1>>k2, there is decarbonization layer on the hot surface of zirconia graphite materials and the corrosion of the layer is the key step. Graphite content is too high or too low is all harmful for the corrosion resistance of zirconia graphite materials.

Alloy Digest ◽  
1968 ◽  
Vol 17 (8) ◽  

Abstract B and W IRON is a thoroughly killed, low carbon steel having a combination of ductility, toughness and high magnetic permeability. It is recommended for applications where good magnetic characteristics are of primary significance, such as in the manufacture of electric motor and generator housings. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: Fe-35. Producer or source: Babcock & Wilcox Company.


Alloy Digest ◽  
1987 ◽  
Vol 36 (2) ◽  

Abstract SAE 1020 is a low-carbon steel combining good machinability, workability and weldability. It is carburized for use in case-hardened components and it is used for a wide range of applications in the hot-worked, cold-worked, normalized or quenched-and-tempered conditions. Its many uses include bolts, rods, plate applications, machinery components, case-hardened parts, spinning tools and trimming dies. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fracture toughness. It also includes information on low temperature performance and corrosion resistance as well as heat treating, machining, joining, and surface treatment. Filing Code: CS-113. Producer or source: Carbon steel mills.


Alloy Digest ◽  
1987 ◽  
Vol 36 (6) ◽  

Abstract WEIRKOTE PLUS is a Galfan-coated sheet steel. The sheet is conventional low-carbon steel normally used for galvanized sheets and strip. This digest will concentrate on the characteristics and properties of the Galfan coating which is nominally a 95% zinc-5% aluminum alloy. The coating on Weirkote Plus is ideal for a variety of tough applications. It is excellent for products that require deep drawing and it combines extra corrosion resistance with superior formability. This datasheet provides information on composition and physical properties. It also includes information on corrosion resistance as well as forming, joining, and surface treatment. Filing Code: Zn-41. Producer or source: Weirton Steel Corp.


Author(s):  
Alaa Fahmy ◽  
Mansour El Sabbagh ◽  
Mahmoud Bedair ◽  
Amr Gangan ◽  
Mohsen El-Sabbah ◽  
...  

2012 ◽  
Vol 20 (6) ◽  
pp. 70-76 ◽  
Author(s):  
Dr.Sami Abualnoun Ajeel ◽  
Haitham Mohammed Waadulah ◽  
Dehia AbdAlkader Sultan

2013 ◽  
Vol 686 ◽  
pp. 244-249 ◽  
Author(s):  
Poovarasi Balan ◽  
Aaron Ng ◽  
Chee Beng Siang ◽  
R.K. Singh Raman ◽  
Eng Seng Chan

Chromium pre-treatments of metal have been replaced by silane pre-treatments as more environmental friendly option. Nanoparticles can be added in the silane sol-gel network have been reported to improve corrosion resistance. In this work, the electrochemical corrosion resistance of low carbon steel coated with hybrid organic-inorganic sol-gel film filled with nanoparticles was evaluated. The sol-gel films have been synthesized from 3-glycidoxy-propyl-trimethoxy-silane (3-GPTMS) and tetra-ethyl-ortho-silicate (TEOS) precursors. These films have been impregnated with 300 ppm of silica or alumina nanoparticles. The electrochemical behavior of the coated steel was evaluated by means of electrochemical impedance spectroscopy (EIS) and scanning electron microscopy (SEM). Equivalent circuit modeling, used for quantifying the EIS measurements showed that sol-gel films containing silica nanoparticles improved the barrier properties of the silane coating. The silica nanoparticle-containing films showed highest initial pore resistance over the five days of immersion in 0.05M NaCl.


Materials ◽  
2020 ◽  
Vol 13 (22) ◽  
pp. 5059
Author(s):  
Michail Nikolaevich Brykov ◽  
Ivan Petryshynets ◽  
Miroslav Džupon ◽  
Yuriy Anatolievich Kalinin ◽  
Vasily Georgievich Efremenko ◽  
...  

The purpose of the research was to obtain an arc welded joint of a preliminary quenched high-carbon wear resistant steel without losing the structure that is previously obtained by heat treatment. 120Mn3Si2 steel was chosen for experiments due to its good resistance to mechanical wear. The fast cooling of welding joints in water was carried out right after welding. The major conclusion is that the soft austenitic layer appears in the vicinity of the fusion line as a result of the fast cooling of the welding joint. The microstructure of the heat affected zone of quenched 120Mn3Si2 steel after welding with rapid cooling in water consists of several subzones. The first one is a purely austenitic subzone, followed by austenite + martensite microstructure, and finally, an almost fully martensitic subzone. The rest of the heat affected zone is tempered material that is heated during welding below A1 critical temperature. ISO 4136 tensile tests were carried out for the welded joints of 120Mn3Si2 steel and 09Mn2Si low carbon steel (ASTM A516, DIN13Mn6 equivalent) after welding with fast cooling in water. The tests showed that welded joints are stronger than the quenched 120Mn3Si2 steel itself. The results of work can be used in industries where the severe mechanical wear of machine parts is a challenge.


2020 ◽  
Vol 984 ◽  
pp. 43-50
Author(s):  
Hua Yuan Zhang ◽  
Can Wang ◽  
Bing Xue ◽  
Jing Luo

To improve the corrosion resistance on Q235 low carbon steel, in this paper, tetraethyl orthosilicate (TEOS), N-dodecyl trimethoxysilane and γ-(2,3-epoxypropoxy) propytrimethoxysilane (KH560) were used to make organic-inorganic hybrid sol-gel film. Cross cut test adhesion method, neutral salt spray test, electrochemical test and film protective efficiency were taken to value the corrosion resistance property. The corrosion topography was studied by optical microscope. In addition, potentiodynamic polarization, electrochemical impedance spectroscopy (EIS) curves and equivalent electric circuit fitting were used to analyze the corrosion mechanism. The cross cut adhesion of sol-gel film can reach 1 class and the protection class can attain 5 class after 72 hours neutral salt spray test. According to the potentiodynamic polarization curve analysis, the corrosion potential of sol-gel film coating sample after 0.5 hours immersion was -0.46 V (vs. SCE) on the 0.1 Hz, and its corrosion current density was 4.74×10-7 A·cm-2. The corrosion potential of bare Q235 low carbon steel plate after 0.5 hours immersion was -0.78 V (vs. SCE) on the 0.1 Hz, and its corrosion current density was 4.75×10-6 A·cm-2. The impedance value on 0.1 Hz (|Z|0.1Hz) (1.27×106 Ω·cm2) of sol-gel film coating sample was more than three orders of magnitude higher than the value of the low carbon steel plate. Even dipping in 3.5 wt. % NaCl for 72 hours, the |Z|0.1Hz value of sol-gel coating sample was still one order of magnitude higher than the low carbon steel plate with 0.5 hours immersion. Sol-gel film with excellent adhesion can significantly improve the corrosion resistance of low carbon steel plate. Sol-gel film can increase the protection efficiency of low carbon steel plate by 90%.


Metals ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 888 ◽  
Author(s):  
Ron ◽  
Levy ◽  
Dolev ◽  
Leon ◽  
Shirizly ◽  
...  

: Current additive manufacturing (AM) processes are mainly focused on powder bed technologies, such as electron beam melting (EBM) and selective laser melting (SLM). However, the main disadvantages of such techniques are related to the high cost of metal powder, the degree of energy consumption, and the sizes of the components, that are limited by the size of the printing cell. The aim of the present study was to evaluate the environmental behavior of low carbon steel (ER70S-6) produced by a relatively inexpensive AM process using wire feed arc welding. The mechanical properties were examined by tension testing and hardness measurements, while microstructure was assessed by scanning electron microscopy and X-ray diffraction analysis. General corrosion performance was evaluated by salt spray testing, immersion testing, potentiodynamic polarization analysis, and electrochemical impedance spectroscopy. Stress corrosion performance was characterized in terms of slow strain rate testing (SSRT). All corrosion tests were carried out in 3.5% NaCl solution at room temperature. The results indicated that the general corrosion resistance of wire arc additive manufacturing (WAAM) samples were quite similar to those of the counterpart ST-37 steel and the stress corrosion resistance of both alloys was adequate. Altogether, it was clearly evident that the WAAM process did not encounter any deterioration in corrosion performance compared to its conventional wrought alloy counterpart.


Sign in / Sign up

Export Citation Format

Share Document