Effect of Sol-Gel Film on the Corrosion Resistance of Low Carbon Steel Plate

2020 ◽  
Vol 984 ◽  
pp. 43-50
Author(s):  
Hua Yuan Zhang ◽  
Can Wang ◽  
Bing Xue ◽  
Jing Luo

To improve the corrosion resistance on Q235 low carbon steel, in this paper, tetraethyl orthosilicate (TEOS), N-dodecyl trimethoxysilane and γ-(2,3-epoxypropoxy) propytrimethoxysilane (KH560) were used to make organic-inorganic hybrid sol-gel film. Cross cut test adhesion method, neutral salt spray test, electrochemical test and film protective efficiency were taken to value the corrosion resistance property. The corrosion topography was studied by optical microscope. In addition, potentiodynamic polarization, electrochemical impedance spectroscopy (EIS) curves and equivalent electric circuit fitting were used to analyze the corrosion mechanism. The cross cut adhesion of sol-gel film can reach 1 class and the protection class can attain 5 class after 72 hours neutral salt spray test. According to the potentiodynamic polarization curve analysis, the corrosion potential of sol-gel film coating sample after 0.5 hours immersion was -0.46 V (vs. SCE) on the 0.1 Hz, and its corrosion current density was 4.74×10-7 A·cm-2. The corrosion potential of bare Q235 low carbon steel plate after 0.5 hours immersion was -0.78 V (vs. SCE) on the 0.1 Hz, and its corrosion current density was 4.75×10-6 A·cm-2. The impedance value on 0.1 Hz (|Z|0.1Hz) (1.27×106 Ω·cm2) of sol-gel film coating sample was more than three orders of magnitude higher than the value of the low carbon steel plate. Even dipping in 3.5 wt. % NaCl for 72 hours, the |Z|0.1Hz value of sol-gel coating sample was still one order of magnitude higher than the low carbon steel plate with 0.5 hours immersion. Sol-gel film with excellent adhesion can significantly improve the corrosion resistance of low carbon steel plate. Sol-gel film can increase the protection efficiency of low carbon steel plate by 90%.

2013 ◽  
Vol 456 ◽  
pp. 438-441 ◽  
Author(s):  
Tian Yang ◽  
Cheng Zhang Peng ◽  
Lang Xiang ◽  
Huo Cao

The electroplated Ni-Co-Cr coatings were prepared on surface of a low carbon steel. The microstructure of the deposits were analyzed by scanning electron microscope (SEM) and X-ray diffraction (XRD), the corrosion resistance of the deposits was evaluated using neutral salt-spray test and polarization measurement. The results show that the deposits are a Co and Cr solid solution in Ni with a grain size of 6.9~10.6nm, were nearly free of corrosion after neutral salt-spray tested 100 hours. With chromium content increasing, the coatings exhibited higher corrosion potential and lower corrosion current, which revealed excellent corrosion resistance.


2013 ◽  
Vol 686 ◽  
pp. 244-249 ◽  
Author(s):  
Poovarasi Balan ◽  
Aaron Ng ◽  
Chee Beng Siang ◽  
R.K. Singh Raman ◽  
Eng Seng Chan

Chromium pre-treatments of metal have been replaced by silane pre-treatments as more environmental friendly option. Nanoparticles can be added in the silane sol-gel network have been reported to improve corrosion resistance. In this work, the electrochemical corrosion resistance of low carbon steel coated with hybrid organic-inorganic sol-gel film filled with nanoparticles was evaluated. The sol-gel films have been synthesized from 3-glycidoxy-propyl-trimethoxy-silane (3-GPTMS) and tetra-ethyl-ortho-silicate (TEOS) precursors. These films have been impregnated with 300 ppm of silica or alumina nanoparticles. The electrochemical behavior of the coated steel was evaluated by means of electrochemical impedance spectroscopy (EIS) and scanning electron microscopy (SEM). Equivalent circuit modeling, used for quantifying the EIS measurements showed that sol-gel films containing silica nanoparticles improved the barrier properties of the silane coating. The silica nanoparticle-containing films showed highest initial pore resistance over the five days of immersion in 0.05M NaCl.


2011 ◽  
Vol 239-242 ◽  
pp. 334-337
Author(s):  
Min Jie Zhou ◽  
Na Zhang

The NiP/TiO2 bilayer coatings were prepared on low carbon steel substates using a combined electroless plating and sol-gel method. The performance of photocathodic protection of the bilayer coatings was investigated by the electrochemical method. The results show that the coating with four TiO2 layers and calcined at 400°C exhibits the highest photoelectrochemical efficiency and the best corrosion resistance property.


Materials ◽  
2019 ◽  
Vol 12 (2) ◽  
pp. 248 ◽  
Author(s):  
Signo Reis ◽  
Mike Koenigstein ◽  
Liang Fan ◽  
Genda Chen ◽  
Luka Pavić ◽  
...  

Ground coat enamels for low carbon steel that contain silica as a mill addition have been developed to study the changes of their properties. Acid-resistant commercial enamel where silica addition was varied from 0 to 10.0 wt % was used for this investigation. The effects of the addition on the corrosion resistance, thermal properties, electrical properties, and mechanical adherence of the enamel to low carbon steel were studied. The corrosion resistance of the steel enameled coupons was tested using a salt spray (fog) apparatus for time periods reaching 168 h at room temperature. It was found that, although the density was not affected, the adherence decreased with an increase in silica content. As expected, the silica addition decreased the coefficient of thermal expansion, which is directly related to the increasing stress between the glass and steel in accordance with the adherence results. A mill addition of 7.5 wt% of silica to the samples was sufficient to obtain adequate enamel adherence and good corrosion resistance. Furthermore, the addition of silica influenced the electrical conductivity and dielectric permittivity measurements at room temperature and the conductivity measured in a wide frequency range (1 Hz–1 MHz). The dielectric permittivity measured at 1 MHz showed decrease after the addition of up to 7.5 wt% of silica.


2017 ◽  
Vol 898 ◽  
pp. 826-831
Author(s):  
Y. Yao ◽  
X.Y. Mao ◽  
L.J. Shao ◽  
H. Chen ◽  
H.Y. Yang ◽  
...  

As compared with the untreated one, the low-carbon steel with gradient alloying produced by impact peening showed an increase in corrosion resistance. Specifically, when the corrosion potential increased from-1061 mV to-603.5 mV, the corrosion current density decreased from 1.579×10-3 A/cm2 to 6.703×10-4 A/cm2, the capacitive arc radius increased, and there was no corrosion products viewed on the surface. The improvement in corrosion resistance could be attributed to the diffusion of Cr allowed by the large number of defects induced by the impact peening deformation. This also resulted in the formation of Fe-Cr solid solution, which helped to promote the formation of a passivation film.


Alloy Digest ◽  
1968 ◽  
Vol 17 (8) ◽  

Abstract B and W IRON is a thoroughly killed, low carbon steel having a combination of ductility, toughness and high magnetic permeability. It is recommended for applications where good magnetic characteristics are of primary significance, such as in the manufacture of electric motor and generator housings. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: Fe-35. Producer or source: Babcock & Wilcox Company.


Alloy Digest ◽  
1987 ◽  
Vol 36 (2) ◽  

Abstract SAE 1020 is a low-carbon steel combining good machinability, workability and weldability. It is carburized for use in case-hardened components and it is used for a wide range of applications in the hot-worked, cold-worked, normalized or quenched-and-tempered conditions. Its many uses include bolts, rods, plate applications, machinery components, case-hardened parts, spinning tools and trimming dies. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fracture toughness. It also includes information on low temperature performance and corrosion resistance as well as heat treating, machining, joining, and surface treatment. Filing Code: CS-113. Producer or source: Carbon steel mills.


Alloy Digest ◽  
1987 ◽  
Vol 36 (6) ◽  

Abstract WEIRKOTE PLUS is a Galfan-coated sheet steel. The sheet is conventional low-carbon steel normally used for galvanized sheets and strip. This digest will concentrate on the characteristics and properties of the Galfan coating which is nominally a 95% zinc-5% aluminum alloy. The coating on Weirkote Plus is ideal for a variety of tough applications. It is excellent for products that require deep drawing and it combines extra corrosion resistance with superior formability. This datasheet provides information on composition and physical properties. It also includes information on corrosion resistance as well as forming, joining, and surface treatment. Filing Code: Zn-41. Producer or source: Weirton Steel Corp.


Author(s):  
Alaa Fahmy ◽  
Mansour El Sabbagh ◽  
Mahmoud Bedair ◽  
Amr Gangan ◽  
Mohsen El-Sabbah ◽  
...  

2019 ◽  
Vol 13 (1) ◽  
pp. 4415-4433
Author(s):  
I. B. Owunna ◽  
A. E. Ikpe

Induced residual stresses on AISI 1020 low carbon steel plate during Tungsten Inert Gas (TIG) welding process was evaluated in this study using experimental and Finite Element Method (FEM). The temperature range measured from the welding experimentation was 251°C-423°C, while the temperature range measured from the FEM was 230°C-563°C; whereas, the residual stress range measured from the welding experimentation was 144MPa-402Mpa, while the residual range measured from the FEM was 233-477MPa respectively. Comparing the temperature and stress results obtained from both methods, it was observed that the range of temperature and residual stresses measured were not exactly the same due to the principles at which both methods operate but disparities between the methods were not outrageous. However, these values can be fed back to optimization tools to obtain optimal parameters for best practices.  Results of the induced stress distribution was created from a static study where the thermal results were used as loading conditions and it was observed that the temperature increased as the von-Mises stress increased, indicating that induced stresses in welded component may hamper the longevity of such component in service condition. Hence, post-weld heat treatment is imperative in order to stress relieve metals after welding operation and improve their service life.


Sign in / Sign up

Export Citation Format

Share Document