The Remedial Effect of the Decomposing Bacteria on Different Petroleum Hydrocarbon Contamination

2011 ◽  
Vol 414 ◽  
pp. 88-92
Author(s):  
Xiao Nan Sun ◽  
An Ping Liu ◽  
Wen Ting Sun ◽  
Shu Chang Jin

Petroleum contamination has become one of the major soil contaminations. Aiming at petroleum hydrocarbon contamination, the multi-group opposite experiments is set; this paper use some petroleum hydrocarbon-decomposing bacteria to remedy the soil contaminated by different carbon chain petroleum hydrocarbons. Compare and study the remedial results, and study the growth of the bacteria in the decomposing process. The Study shows that the degradation rate of the bacteria to short-chain petroleum hydrocarbons is relatively high; Within 40 days without nutrient substance, degradation rate of bacteria to gasoline and diesel is 80%, degradation rate of bacteria to aromatics and lubricants is 50%, the trend of bacteria’s growth curve and the degradation rate curve of each component are approximate.

2011 ◽  
Vol 414 ◽  
pp. 121-125
Author(s):  
Xiao Nan Sun ◽  
An Ping Liu ◽  
Xiu Rong Chen ◽  
Shu Chang Jin

This paper discusses the migration of the total petroleum hydrocarbon (TPH) contamination, which concludes the migration rule of the TPH contamination through designing indoor soil column leaching experiments. Through researching the migration concentration of TPH in different leaching amount, results shows that the ability of migration of TPH is more powerful when there is more leaching amount. But overall, the affection caused by different leaching amount is not obvious. The results of this research can provide guidance to the nonproliferation and remediation of petroleum contamination.


Molecules ◽  
2019 ◽  
Vol 24 (18) ◽  
pp. 3400 ◽  
Author(s):  
Adam Truskewycz ◽  
Taylor D. Gundry ◽  
Leadin S. Khudur ◽  
Adam Kolobaric ◽  
Mohamed Taha ◽  
...  

Petroleum hydrocarbons represent the most frequent environmental contaminant. The introduction of petroleum hydrocarbons into a pristine environment immediately changes the nature of that environment, resulting in reduced ecosystem functionality. Natural attenuation represents the single, most important biological process which removes petroleum hydrocarbons from the environment. It is a process where microorganisms present at the site degrade the organic contaminants without the input of external bioremediation enhancers (i.e., electron donors, electron acceptors, other microorganisms or nutrients). So successful is this natural attenuation process that in environmental biotechnology, bioremediation has developed steadily over the past 50 years based on this natural biodegradation process. Bioremediation is recognized as the most environmentally friendly remediation approach for the removal of petroleum hydrocarbons from an environment as it does not require intensive chemical, mechanical, and costly interventions. However, it is under-utilized as a commercial remediation strategy due to incomplete hydrocarbon catabolism and lengthy remediation times when compared with rival technologies. This review aims to describe the fate of petroleum hydrocarbons in the environment and discuss their interactions with abiotic and biotic components of the environment under both aerobic and anaerobic conditions. Furthermore, the mechanisms for dealing with petroleum hydrocarbon contamination in the environment will be examined. When petroleum hydrocarbons contaminate land, they start to interact with its surrounding, including physical (dispersion), physiochemical (evaporation, dissolution, sorption), chemical (photo-oxidation, auto-oxidation), and biological (plant and microbial catabolism of hydrocarbons) interactions. As microorganism (including bacteria and fungi) play an important role in the degradation of petroleum hydrocarbons, investigations into the microbial communities within contaminated soils is essential for any bioremediation project. This review highlights the fate of petroleum hydrocarbons in tertial environments, as well as the contributions of different microbial consortia for optimum petroleum hydrocarbon bioremediation potential. The impact of high-throughput metagenomic sequencing in determining the underlying degradation mechanisms is also discussed. This knowledge will aid the development of more efficient, cost-effective commercial bioremediation technologies.


2016 ◽  
Author(s):  
Arghya Mukherjee ◽  
Bobby Chettri ◽  
James S. Langpoklakpam ◽  
Pijush Basak ◽  
Aravind Prasad ◽  
...  

AbstractMicrobial remediation of oil polluted habitats remains one of the foremost methods for restoration of petroleum hydrocarbon contaminated environments. The development of effective bioremediation strategies however, require an extensive understanding of the resident microbiome of these habitats. Recent developments such as high-throughput sequencing has greatly facilitated the advancement of microbial ecological studies in oil polluted habitats. However, effective interpretation of biological characteristics from these large datasets remains a considerable challenge. In this study, we have implemented recently developed bioinformatic tools for analyzing 65 publicly available 16S rRNA datasets from 12 diverse hydrocarbon polluted habitats to decipher metagenomic characteristics of bacterial communities of the same. We have comprehensively described phylogenetic and functional compositions of these habitats and additionally inferred a multitude of metagenomic features including 255 taxa and 414 functional modules which can be used as biomarkers for effective distinction between the 12 oil polluted sites. We have identified essential metabolic signatures and also showed that significantly over-represented taxa often contribute to either or both, hydrocarbon degradation and additional important functions. Our findings reveal significant differences between hydrocarbon contaminated sites and establishes the importance of endemic factors in addition to petroleum hydrocarbons as driving factors for sculpting hydrocarbon contaminated bacteriomes.


Author(s):  
Emilio D’Ugo ◽  
Milena Bruno ◽  
Arghya Mukherjee ◽  
Dhrubajyoti Chattopadhyay ◽  
Roberto Giuseppetti ◽  
...  

AbstractMicrobiomes of freshwater basins intended for human use remain poorly studied, with very little known about the microbial response to in situ oil spills. Lake Pertusillo is an artificial freshwater reservoir in Basilicata, Italy, and serves as the primary source of drinking water for more than one and a half million people in the region. Notably, it is located in close proximity to one of the largest oil extraction plants in Europe. The lake suffered a major oil spill in 2017, where approximately 400 tons of crude oil spilled into the lake; importantly, the pollution event provided a rare opportunity to study how the lacustrine microbiome responds to petroleum hydrocarbon contamination. Water samples were collected from Lake Pertusillo 10 months prior to and 3 months after the accident. The presence of hydrocarbons was verified and the taxonomic and functional aspects of the lake microbiome were assessed. The analysis revealed specialized successional patterns of lake microbial communities that were potentially capable of degrading complex, recalcitrant hydrocarbons, including aromatic, chloroaromatic, nitroaromatic, and sulfur containing aromatic hydrocarbons. Our findings indicated that changes in the freshwater microbial community were associated with the oil pollution event, where microbial patterns identified in the lacustrine microbiome 3 months after the oil spill were representative of its hydrocarbonoclastic potential and may serve as effective proxies for lacustrine oil pollution.


Sign in / Sign up

Export Citation Format

Share Document