Effect of Metal Intercalating on Transmission Characteristics of One-Dimensional Photonic Crystal

2011 ◽  
Vol 418-420 ◽  
pp. 679-683
Author(s):  
Bei Jia He ◽  
Xin Yi Chen ◽  
Jian Bo Wang ◽  
Jun Lu ◽  
Jian Chang ◽  
...  

To expand the bandgap's width of the one-dimensional photonic crystal, a crystal named SiO2/Metal/MgF2 is formed by joining some metals into the crystal SiO2/MgF2. Furthermore the Finite Difference Time Domain (FDTD) method is used to explore the metals' influence on the crystal's transmission characteristics. The simulation results show that the metals joined could expand the width of the one-dimensional photonic crystal's bandgap effectively and the bandgap's width increases when the metals' thickness increases. Meanwhile the bandgap's characteristic is affected by the metals' material-characteristic. The higher the plasma frequency is, the wider the bandgap's width will be and the more the number of the bandgaps will be. On the other hand, the metals' damping frequency has no significant effect on the bandgap, but would make the bandgap-edge's transmittance decrease slightly.

2018 ◽  
Vol 2 (1) ◽  
pp. 27
Author(s):  
Lily Maysari Angraini ◽  
I Wayan Sudiarta

<span>The purpose of  this paper is to show some improvements of the finite-difference time domain (FDTD) method using Numerov and non-standard finite difference (NSFD) schemes for solving the one-dimensional Schr</span><span>ö</span><span>dinger equation. Starting with results of the unmodified FDTD method, Numerov-FD and NSFD are applied iteratively to produce more accurate results for eigen energies and wavefunctios. Three potential wells, infinite square well, harmonic oscillator and Poschl-Teller, are used to compare results of FDTD calculations. Significant improvements in the results for the infinite square potential and the harmonic oscillator potential are found using Numerov-NSFD scheme, and for Poschl-Teller potential are found using Numerov scheme.</span>


2007 ◽  
Vol 24 (3) ◽  
pp. 297-302 ◽  
Author(s):  
V. G. Arkhipkin ◽  
V. A. Gunyakov ◽  
S. A. Myslivets ◽  
V. Ya. Zyryanov ◽  
V. F. Shabanov

2013 ◽  
Vol 401-403 ◽  
pp. 748-753
Author(s):  
Xu Yang Xiao ◽  
Run Ping Chen ◽  
Zheng Fu Cheng

We propose the one-dimensional photonic crystal quantum well structure composed of two negative metamaterials, the features of which are investigated with scattering matrix method. With this method, the transmittance, reflectance and dispersion relation of electromagnetic wave propagation in photonic crystal are obtained. Moreover, the photonic band structure is given by dispersion relation. For photonic crystal parallel wells the sandwich structure (MpNqMp) and four PCs structure (MpNqMpNq), the resonant modes exist in the photonic band gaps. The number of resonant modes is varied by changing the period number of the constituent photonic crystals. Meanwhile, the resonant modes is not sensitive to the incident angle increasing, only shift slowly to lower frequency region. Moreover, the resonant modes can be act as multiple ultra-narrow bandwidth filters.


2006 ◽  
Author(s):  
Xiaodong He ◽  
Xingyuan Liu ◽  
Donghua Xie ◽  
Haixia Yu ◽  
Chuanping Tong ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document