Study on the Microstructure and Mechanical Properties of TiB2-Ti(C,N) Composite Ceramic Tool Materials

2012 ◽  
Vol 426 ◽  
pp. 155-158 ◽  
Author(s):  
Lin Liu ◽  
Chuan Zhen Huang ◽  
Bin Zou ◽  
Liang Xu ◽  
H.L. Liu ◽  
...  

TiB2-Ti(C, N)-(Ni, Mo) composite ceramic tool materials were fabricated by the hot-press sintering technology. The effects of the content of Ti(C, N) on the microstructure and mechanical properties were investigated by XRD and SEM observations. It is shown that the grain size of the composites is small, the fracture surface is irregularity, the grain boundaries of TiB2 and Ti(C, N) are connected tightly, and a new crystalline phase of MoNi is formed. A small amount of Ti(C, N) is decomposed into TiN, and the decomposition of Ti(C, N) is intensified as the content of Ti(C, N) is increased during the sintering process. The fracture pattern is the combination of the intergranular mode and transgranular mode. It is found that the flexural strength and fracture toughness of TiB2-Ti(C, N)-(Ni, Mo) composites increase consistently owning to the addition of Ti(C, N), the maximum resultant mechanical properties of TiB2-Ti(C, N)-(Ni, Mo) composites are 1019.53MPa for the flexural strength, 6.89MPa•m1/2 for the fracture toughness and 23.65GPa for Vickers hardness.

2012 ◽  
Vol 500 ◽  
pp. 640-645 ◽  
Author(s):  
Yan Zhao ◽  
Chuan Zhen Huang ◽  
Bin Zou ◽  
Yu Huan Fei ◽  
Han Lian Liu ◽  
...  

TiB2-Ti (C0.5N0.5)-WC composite tool materials were fabricated by the hot-pressing technique. The effects of sintering process on microstructure and mechanical properties of TiB2 -Ti (C0.5N0.5) -WC composite tool materials were studied. The flexural strength was measured by three point bending test, and Vickers hardness and the fracture toughness were measured on polished surfaces by Vickers indentation. The microstructure of TiB2-Ti (C0.5N0.5)-WC composite ceramic was analyzed by XRD and SEM observations. The results show that the mechanical properties can be improved in a proper heating mode. When the direct heating-up mode was conducted, the flexural strength, fracture toughness and hardness reached 854MPa, 7.2MPa·m1/2 and 19.7GPa, respectively.


2014 ◽  
Vol 800-801 ◽  
pp. 511-515
Author(s):  
Xian Hua Tian ◽  
Jun Zhao ◽  
Shuai Liu ◽  
Zhao Chao Gong

Close attention has been paid to Functional graded materials (FGMs) worldwide for their novel design ideas and outstanding properties. To verify the advantage of FGMS in the design of ceramic tool materials, Si3N4/(W, Ti)C nanocomposite ceramic tool materials with homogenous and graded structure were fabricated by hot pressing and sintering technology. The flexural strength, fracture toughness and hardness of the sintered composites were tested and compared. The experimental results showed that the graded structure improved mechanical properties of the ceramic tool materials, especially the flexural strength and fracture toughness. The introduction of residual compressive stress in the surface layer contributes to the improvement of the properties .


2012 ◽  
Vol 723 ◽  
pp. 233-237 ◽  
Author(s):  
Tong Chun Yang ◽  
Chuan Zhen Huang ◽  
Han Lian Liu ◽  
Bin Zou ◽  
Hong Tao Zhu ◽  
...  

TiB2-(W,Ti)C composites with (Ni,Mo) as sintering additive have been fabricated by hot-pressing technique, and the microstructure and mechanical properties of the composites have been investigated. (Ni,Mo) promotes grain growth of the composites. In the case of 7vol.% (Ni,Mo), the grain size decreases consistently with an increase in the content of (W,Ti)C. When the proper content of (W,Ti)C is added to TiB2 composites, the growth of matrix grains is inhibited and the mechanical properties of the composites are improved. The best mechanical properties of the composites are 1084.13MPa for three-point flexural strength, 7.80MPa•m 1/2 for fracture toughness and 17.92GPa for Vickers hardness.


2010 ◽  
Vol 431-432 ◽  
pp. 523-526
Author(s):  
Han Lian Liu ◽  
Chuan Zhen Huang ◽  
Shou Rong Xiao ◽  
Hui Wang ◽  
Ming Hong

Under the liquid-phase hot-pressing technique, the multi-scale titanium diboride matrix nanocomposite ceramic tool materials were fabricated by adding both micro-scale and nano-scale TiN particles into TiB2 with Ni and Mo as sintering aids. The effect of content of nano-scale TiN and sintering temperature on the microstructure and mechanical properties was studied. The result showed that flexural strength and fracture toughness of the composites increased first, and then decreased with an increase of the content of nano-scale TiN, while the Vickers hardness decreased with an increase of the content of nano-scale TiN. The optimal mechanical properties were flexural strength 742 MPa, fracture toughness 6.5 MPa•m1/2 and Vickers hardness 17GPa respectively. The intergranular and transgranular fracture mode were observed in the composites. The metal phase can cause ductility toughening and crack bridging, while crack deflection and transgranular fracture mode could be brought by micro-scale TiN and nano-scale TiN respectively.


2008 ◽  
Vol 368-372 ◽  
pp. 1764-1766 ◽  
Author(s):  
Yu Jin Wang ◽  
Lei Chen ◽  
Tai Quan Zhang ◽  
Yu Zhou

The ZrC-W composites with iron as sintering additive were fabricated by hot-press sintering. The densification, microstructure and mechanical properties of the composites were investigated. The incorporation of Fe beneficially promotes the densification of ZrC-W composites. The relative density of the composite sintered at 1900°C can attain 95.3%. W2C phase is also found in the ZrC-W composite sintered at 1700°C. The content of W2C decreases with the increase of sintering temperature. However, W2C phase is not identified in the composite sintered at 1900°C. The flexural strength and fracture toughness of the composites are strongly dependent on sintering temperature. The flexural strength and fracture toughness of ZrC-W composite sintered at optimized temperature of 1800°C are 438 MPa and 3.99 MPa·m1/2, respectively.


2012 ◽  
Vol 499 ◽  
pp. 108-113
Author(s):  
Yu Huan Fei ◽  
Chuan Zhen Huang ◽  
Han Lian Liu ◽  
Bin Zou

Al2O3-TiN nanocomposite ceramic tool materials were fabricated by hot-pressing technique and the mechanical properties were measured. Mechanical properties such as room temperature flexural strength, Vickers hardness and fracture toughness were measured through three-point bending test and Vickers indentation. The effects of the content of nano-scale TiN, sintering temperature and holding time on the mechanical properties were investigated. The results shows that the addition of nano-scale TiN can improve the mechanical properties of alumina ceramics. Both the flexural strength and the fracture toughness first increased then decreased with an increment in the content of nano-scale TiN. Both the Vickers hardness and the fracture toughness increased with an increment in the sintering temperature. The flexural strength increased with an increment in the holding time, while the fracture toughness decreased with an increment in the holding time. The composites with only nano-scale TiN have the highest Vickers hardness for the holding time of 30min, while the hardness of the composites with nano-scale TiN and micro-scale TiN decreased with an increment in the holding time.


2011 ◽  
Vol 686 ◽  
pp. 396-400
Author(s):  
Ming Dong Yi ◽  
Chong Hai Xu ◽  
Jing Jie Zhang ◽  
Zhen Yu Jiang

A new nano-composite ceramic tool and die material was prepared by vacuum hot pressing technique. The effect of hot pressing technology on the microstructure and mechanical properties of ZrO2nano-composite ceramic tool and die material was investigated systemically, and the ceramic tool and die material with good mechanical properties was fabricated successfully. Results show that, the highest flexural strength, fracture toughness and hardness of ZrO2nano-composite ceramic tool and die material reaches 1055 MPa, 10.57 MPa∙m1/2 and 13.59 GPa, respectively by means of the vacuum hot pressing technique at 1430 °C for 60min at 35MPa. The flexural strength and fracture toughness has been improved greatly by the optimization of hot pressing technology. In the materials, the optimum sinter process could ensure the t-ZrO2stabilized till room temperature that can enhance the toughening effect of ZrO2. The microstructure of ZrO2nano-composite ceramic tool and die materials were improved by the optimization of hot pressing technology, and the fracture mode is the typical mixed trans/inter-granular fracture mode.


Sign in / Sign up

Export Citation Format

Share Document