The Effects of Sintering Process on Microstructure and Mechanical Properties of TiB2-Ti(C0.5N0.5)-WC Composite Tool Materials

2012 ◽  
Vol 500 ◽  
pp. 640-645 ◽  
Author(s):  
Yan Zhao ◽  
Chuan Zhen Huang ◽  
Bin Zou ◽  
Yu Huan Fei ◽  
Han Lian Liu ◽  
...  

TiB2-Ti (C0.5N0.5)-WC composite tool materials were fabricated by the hot-pressing technique. The effects of sintering process on microstructure and mechanical properties of TiB2 -Ti (C0.5N0.5) -WC composite tool materials were studied. The flexural strength was measured by three point bending test, and Vickers hardness and the fracture toughness were measured on polished surfaces by Vickers indentation. The microstructure of TiB2-Ti (C0.5N0.5)-WC composite ceramic was analyzed by XRD and SEM observations. The results show that the mechanical properties can be improved in a proper heating mode. When the direct heating-up mode was conducted, the flexural strength, fracture toughness and hardness reached 854MPa, 7.2MPa·m1/2 and 19.7GPa, respectively.

2012 ◽  
Vol 426 ◽  
pp. 155-158 ◽  
Author(s):  
Lin Liu ◽  
Chuan Zhen Huang ◽  
Bin Zou ◽  
Liang Xu ◽  
H.L. Liu ◽  
...  

TiB2-Ti(C, N)-(Ni, Mo) composite ceramic tool materials were fabricated by the hot-press sintering technology. The effects of the content of Ti(C, N) on the microstructure and mechanical properties were investigated by XRD and SEM observations. It is shown that the grain size of the composites is small, the fracture surface is irregularity, the grain boundaries of TiB2 and Ti(C, N) are connected tightly, and a new crystalline phase of MoNi is formed. A small amount of Ti(C, N) is decomposed into TiN, and the decomposition of Ti(C, N) is intensified as the content of Ti(C, N) is increased during the sintering process. The fracture pattern is the combination of the intergranular mode and transgranular mode. It is found that the flexural strength and fracture toughness of TiB2-Ti(C, N)-(Ni, Mo) composites increase consistently owning to the addition of Ti(C, N), the maximum resultant mechanical properties of TiB2-Ti(C, N)-(Ni, Mo) composites are 1019.53MPa for the flexural strength, 6.89MPa•m1/2 for the fracture toughness and 23.65GPa for Vickers hardness.


2014 ◽  
Vol 800-801 ◽  
pp. 511-515
Author(s):  
Xian Hua Tian ◽  
Jun Zhao ◽  
Shuai Liu ◽  
Zhao Chao Gong

Close attention has been paid to Functional graded materials (FGMs) worldwide for their novel design ideas and outstanding properties. To verify the advantage of FGMS in the design of ceramic tool materials, Si3N4/(W, Ti)C nanocomposite ceramic tool materials with homogenous and graded structure were fabricated by hot pressing and sintering technology. The flexural strength, fracture toughness and hardness of the sintered composites were tested and compared. The experimental results showed that the graded structure improved mechanical properties of the ceramic tool materials, especially the flexural strength and fracture toughness. The introduction of residual compressive stress in the surface layer contributes to the improvement of the properties .


2012 ◽  
Vol 723 ◽  
pp. 233-237 ◽  
Author(s):  
Tong Chun Yang ◽  
Chuan Zhen Huang ◽  
Han Lian Liu ◽  
Bin Zou ◽  
Hong Tao Zhu ◽  
...  

TiB2-(W,Ti)C composites with (Ni,Mo) as sintering additive have been fabricated by hot-pressing technique, and the microstructure and mechanical properties of the composites have been investigated. (Ni,Mo) promotes grain growth of the composites. In the case of 7vol.% (Ni,Mo), the grain size decreases consistently with an increase in the content of (W,Ti)C. When the proper content of (W,Ti)C is added to TiB2 composites, the growth of matrix grains is inhibited and the mechanical properties of the composites are improved. The best mechanical properties of the composites are 1084.13MPa for three-point flexural strength, 7.80MPa•m 1/2 for fracture toughness and 17.92GPa for Vickers hardness.


2012 ◽  
Vol 499 ◽  
pp. 108-113
Author(s):  
Yu Huan Fei ◽  
Chuan Zhen Huang ◽  
Han Lian Liu ◽  
Bin Zou

Al2O3-TiN nanocomposite ceramic tool materials were fabricated by hot-pressing technique and the mechanical properties were measured. Mechanical properties such as room temperature flexural strength, Vickers hardness and fracture toughness were measured through three-point bending test and Vickers indentation. The effects of the content of nano-scale TiN, sintering temperature and holding time on the mechanical properties were investigated. The results shows that the addition of nano-scale TiN can improve the mechanical properties of alumina ceramics. Both the flexural strength and the fracture toughness first increased then decreased with an increment in the content of nano-scale TiN. Both the Vickers hardness and the fracture toughness increased with an increment in the sintering temperature. The flexural strength increased with an increment in the holding time, while the fracture toughness decreased with an increment in the holding time. The composites with only nano-scale TiN have the highest Vickers hardness for the holding time of 30min, while the hardness of the composites with nano-scale TiN and micro-scale TiN decreased with an increment in the holding time.


2006 ◽  
Vol 532-533 ◽  
pp. 37-40 ◽  
Author(s):  
Chuan Zhen Huang ◽  
Jun Wang ◽  
Li Qiang Xu ◽  
Sui Lian Wang ◽  
Han Lian Liu

Advanced Ti(C, N) matrix cermet tool materials with higher mechanical properties are successfully developed by dispersing nano-scale Al2O3 powder into the micro-scale Ti(C, N) matrix and Ni-Mo bonding phases powder. The effect of the content of nano-scale alumina on the microstructure and mechanical properties of micro-scale Ti(C, N) matrix cermet tool materials are investigated. The research results show that a type of Ti(C, N) matrix cermet tool material has the most optimal flexural strength of 900MPa, Vickers hardness of 17.4GPa and fracture toughness of 9.95MPa.m1/2 when the content of nano-scale alumina is 12% in term of mass. It is found from the microstructure analysis that the main reason of the mechanical properties improvement is the grain fining effect caused by nano-scale Al2O3.


2010 ◽  
Vol 431-432 ◽  
pp. 523-526
Author(s):  
Han Lian Liu ◽  
Chuan Zhen Huang ◽  
Shou Rong Xiao ◽  
Hui Wang ◽  
Ming Hong

Under the liquid-phase hot-pressing technique, the multi-scale titanium diboride matrix nanocomposite ceramic tool materials were fabricated by adding both micro-scale and nano-scale TiN particles into TiB2 with Ni and Mo as sintering aids. The effect of content of nano-scale TiN and sintering temperature on the microstructure and mechanical properties was studied. The result showed that flexural strength and fracture toughness of the composites increased first, and then decreased with an increase of the content of nano-scale TiN, while the Vickers hardness decreased with an increase of the content of nano-scale TiN. The optimal mechanical properties were flexural strength 742 MPa, fracture toughness 6.5 MPa•m1/2 and Vickers hardness 17GPa respectively. The intergranular and transgranular fracture mode were observed in the composites. The metal phase can cause ductility toughening and crack bridging, while crack deflection and transgranular fracture mode could be brought by micro-scale TiN and nano-scale TiN respectively.


2010 ◽  
Vol 105-106 ◽  
pp. 27-30 ◽  
Author(s):  
Wei Ru Zhang ◽  
Feng Sun ◽  
Ting Yan Tian ◽  
Xiang Hong Teng ◽  
Min Chao Ru ◽  
...  

Silicon nitride ceramics were prepared by gas pressure sintering (GPS) with different sintering additives, including La2O3, Sm2O3 and Al2O3. Effect of sintering additives on the phase-transformation, microstructure and mechanical properties of porous silicon nitride ceramics was investigated. The results show that the reaction of sintering additives each other and with SiO2 had key effects on the phase-transformation, grain growing and grain boundaries. With 9MPa N2 atmosphere pressure, holding 1h at 1850°C, adding 10wt% one of the La2O3, Sm2O3, Al2O3, porous silicon nitride was prepared and the relative density was 78%, 72%, 85% respectively. The flexural strength was less than 500MPa, and the fracture toughness was less than 4.8MPam1/2. Dropping compounds sintering additives, such as La2O3+Al2O3, Sm2O3+Al2O3 effectively improves the sintering and mechanical properties. The relative density was 99.2% and 98.7% with 10wt% compounds sintering additives. The grain ratio of length to diameter was up to 1:8. The flexural strength was more than 900MPa, and the fracture toughness was more than 8.9MPam1/2.


2020 ◽  
Vol 10 (13) ◽  
pp. 4435
Author(s):  
Qi Li ◽  
Guangchun Xiao ◽  
Zhaoqiang Chen ◽  
Runxin Guo ◽  
Mingdong Yi ◽  
...  

The Al2O3/Ti(C,N) ceramic material added micron ZrO2 whisker and nano coated CaF2@Al(OH)3 powder was fabricated. The micron ZrO2 whisker was for the toughening and reinforcing phase and the nano coated CaF2@Al(OH)3 powder was the lubricant. For obtaining a ceramic material with optimal comprehensive mechanical properties and friction properties, the influences of different compositions of the ZrO2 whisker and nano coated CaF2@Al(OH)3 powder on the microstructure and mechanical properties were analyzed, respectively. The result demonstrated that as the addition of the ZrO2 whisker was 6 vol% and the addition of the nano coated CaF2@Al(OH)3 powder was 10 vol%, the optimal self-lubricating ceramic material had optimal mechanical properties. The hardness of the ceramic material was 16.72 GPa, the flexural strength was 520 MPa and the fracture toughness reached 7.16 MPa·m1/2. The formation of the intragranular structure, whisker toughening and the phase transition of ZrO2 were the main mechanisms.


2008 ◽  
Vol 368-372 ◽  
pp. 1730-1732 ◽  
Author(s):  
Ping Hu ◽  
Xing Hong Zhang ◽  
Jie Cai Han ◽  
Song He Meng ◽  
Bao Lin Wang

SiC whisker-reinforced ZrB2 matrix ultra-high temperature ceramic were prepared at 2000°C for 1 h under 30MPa by hot pressing and the effects of whisker on flexural strength and fracture toughness of the composites was examined. The flexural strength and fracture toughness are 510±25MPa and 4.05±0.20MPa⋅m1/2 at room temperature, respectively. Comparing with the SiC particles-reinforced ZrB2 ceramic, no significant increase in both strength and toughness was observed. The microstructure of the composite showed that the SiC whisker was destroyed because the SiC whisker degraded due to rapid atom diffusivity at high temperature. The results suggested that some related parameters such as the lower hot-pressing temperature, a short sintering time should be controlled in order to obtain SiC whiskerreinforced ZrB2 composite with high properties.


Materials ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 2046 ◽  
Author(s):  
Yi Jing ◽  
Hongbing Yuan ◽  
Zisheng Lian

ZrB2–HfC ceramics have been fabricated using the liquid phase sintering technique at a sintering temperature as low as 1750 °C through the addition of Ni. The effects of HfC addition on the microstructure and mechanical properties of ZrB2–based ceramics have been investigated. These ceramics were composed of ZrB2, HfC, Ni, and a small amount of possible (Zr, Hf)B2 solid solution. Small HfC grains were distributed among ZrB2 grain boundaries. These small grains could improve the density of ZrB2–based ceramics and play a pinning role. With HfC content increasing from 10 wt % to 30 wt %, more HfC grains were distributed among ZrB2 grain boundaries, leading to weaker interface bonding among HfC grains; the relative density and Vickers hardness increased, and flexural strength and fracture toughness decreased. The weak interface bonding for 20 and 30 wt % HfC contents was the main cause of the decrease in both flexural strength and fracture toughness.


Sign in / Sign up

Export Citation Format

Share Document