Preparation and Characterization of Microcapsules for Self-Healing Material

2012 ◽  
Vol 430-432 ◽  
pp. 960-963 ◽  
Author(s):  
Wan Peng Ma ◽  
Wei Zhang ◽  
Yang Zhao ◽  
Le Ping Liao ◽  
Si Jie Wang

Urea-formaldehyde microcapsules containing epoxy resin is a promising material for self-healing design. The microcapsules were prepared by in-situ polymerization in an oil-in-water emulsion. The microcapsule formation process was monitored using optical microscopy. Surface morphology was observed using field emission scanning electron microscopy. The thermal property of microcapsules was characterized using thermogravimetric analysis. The results indicate that microcapsule wall has a rough outer surface and a smooth inner surface. The microcapsule size is controlled by different agitation rates. Microcapsules have a good thermal stability below 157°C.

2013 ◽  
Vol 800 ◽  
pp. 471-475
Author(s):  
Wang Rui ◽  
Qian Jin Mao ◽  
Qi Dong Liu ◽  
Xiao Yu Ma ◽  
Su Ping Cui ◽  
...  

The self-healing polymer material which was embedded microcapsules possesses the ability to heal cracks automatically. The microcapsules were synthesized by in-situ polymerization in an oil-in-water emulsion with urea and formaldehyde as the raw shell material,and epoxy resin (E-51)/ xylene as the core material. The impact of stirring speed on the morphology and particle size of synthetic microcapsules were discussed by optical microscopy (OM), scanning electron microscopy (SEM), and Fourier-transform infrared spectrometer (FTIR).Microcapsules of 400~1500 um in diameter were produced by appropriate selection of agitation rate in the range of 300~600 r/min.


2010 ◽  
Vol 148-149 ◽  
pp. 1031-1035
Author(s):  
Yang Zhao ◽  
Wei Zhang ◽  
Le Ping Liao ◽  
Wu Jun Li ◽  
Yi Xin

With the development of the embedded microcapsule concept for self-healing material, the preparation of microcapsule has been paid more attentions. A new series of microcapsules were prepared by in situ polymerization technology in an oil-in-water emulsion with polyoxymethylene urea (PMU) as shell material and a mixture of epoxy resins as core material. The PMU microcapsules were characterized by Fourier transform infrared spectroscopy (FTIR), scanning electronic microscopy (SEM), particle size analyzer and thermo gravimetric analyzer (TGA) to investigate their chemical structure, surface morphology, size distribution and thermal stability, respectively. The results indicate that PMU microcapsules containing epoxy resins can be synthesized successfully. The optimized reaction parameters were obtained as follow: agitation rate 600 rpm, 60°C water bath, pH=3.5, core material 20ml and hot water dilution by in-situ polymerization. The size is around 116 μm. The rough outer surface of microcapsule is composed of agglomerated PMU nanoparticles. The microcapsules basically exhibit good storage stability at room temperature, and they are chemically stable before the heating temperature is up to approximately 200°C.


Author(s):  
Zhenzhen Lu ◽  
Sahinur Acter ◽  
Boon M. Teo ◽  
Rico Tabor

In this article, we present a facile and robust method for the surfactant-free preparation of polynorepinephrine (PNE) stabilised microcapsules templated from an oil-in-water emulsion. The resulting microcapsule structures are clearly...


2020 ◽  
Vol 34 (12) ◽  
pp. 16147-16157
Author(s):  
Kai Wang ◽  
Ke Li ◽  
Jing Tang ◽  
Hongjun Fan ◽  
Haifeng Wang ◽  
...  

2012 ◽  
Vol 729 ◽  
pp. 205-209
Author(s):  
Anna Czeller ◽  
Tibor Czigány

In this paper, melamin-formaldehyde microcapsules filled with pentaerythritol tetrakis (3-mercaptopropionate) (PETMP) or epoxy were prepared via oil-in-water emulsion polymerization method. Two different routes were chosen from literature, and applied with some changes. The effects of modification of reaction conditions on the resulting capsules were studied. It was found that too low pH value in the emulsion causes burst polymerization of the wall material, without microcapsule formation. When pH was set to 4.5 spherical microcapsules were formed. Optical microscopy was used to evaluate the microcapsules.


Langmuir ◽  
2017 ◽  
Vol 33 (30) ◽  
pp. 7380-7388 ◽  
Author(s):  
Na Liu ◽  
Qingdong Zhang ◽  
Ruixiang Qu ◽  
Weifeng Zhang ◽  
Haifang Li ◽  
...  

2016 ◽  
Vol 694 ◽  
pp. 58-63 ◽  
Author(s):  
Hafeez Ullah ◽  
Khairun Azizi Azizli ◽  
Zakaria Man ◽  
Muhammad Irfan Khan

Three different functionalized polydimethylsiloxane based probable self-healing materials were encapsulated by oil-in-water emulsion polymerization melamine-formaldehyde (MF) microcapsules for future applications in self-healing composites systems. The diameter and morphology, thermal properties, and structural analysis of the synthesized microcapsules were determined by scanning electron microscope (SEM), thermogravimetric analysis (TGA), Fourier-transform infrared spectroscopy (FT-IR), and electron dispersive spectroscopy (EDS). The results showed that nature of core material plays an important role in the morphology and thermal stability of the microcapsules.


Sign in / Sign up

Export Citation Format

Share Document