Methyl Orange Photoelectrocatalytic Degradation Using Porous TiO2 Film Electrode in NaH2PO4 Solution

2012 ◽  
Vol 433-440 ◽  
pp. 411-415
Author(s):  
Wen Jie Zhang ◽  
Ke Xin Li ◽  
Jia Wei Bai

Porous TiO2 film was prepared by a sol-gel method using PEG1000 as pore forming template. The porous film and normal film were used as electrodes in a photoelectrocatalytic reactor. The functions of applied potential and concentration of NaH2PO4 to the photoelectrocatalytic degradation process of methyl orange were investigated. The results show that methyl orange cannot be degraded solely by the applied potential. Under the applied potential of 2 V, 49.9% of the initial dye can be removed on the normal TiO2 film electrode, which is much better than the 31.1% removal rate on the porous TiO2 film electrode. The normal TiO2 film electrode has better performance than the porous TiO2 film in the whole NaH2PO4 concentration range. After 80 min of reaction, degradation rate is 93.7% on the normal TiO2 film electrode. After 100 min of reaction, degradation rate is 89.7% on the porous TiO2 film electrode.

2012 ◽  
Vol 457-458 ◽  
pp. 521-524 ◽  
Author(s):  
Wen Jie Zhang ◽  
Qian Li ◽  
Hong Bo He

The functions of applied potential to the photoelectrocatalytic degradation process of methyl orange were investigated. When using 0.05 M NaCl and under different applied potentials, the degradation rate increased obviously with increasing applied potential. When the applied potential was between 0.6 V-1.0 V, the degradation rate was enhanced drastically. The detected current values got larger as the applied potential increased from 0 up to 1.2 V. There was no direct electro-degradation to the dye in the solution. The applied potential and the irradiated light had synergetic effect when they were applied to the solution at the same time. While after irradiation for 0 to 60 min, with the increasing reaction time, methyl orange absorption peak intensity shrank obviously. The azo and benzene groups in methyl orange degraded totally under photocatalytic process.


2012 ◽  
Vol 487 ◽  
pp. 635-639
Author(s):  
Wen Jie Zhang ◽  
Hong Liang Xin ◽  
Hong Bo He

Porous and smooth TiO2 film electrodes prepared by sol-gel method were used on methyl orange degradation by an electro-assisted photocatalytic degradation process. Methyl orange cannot be degraded under applied potential solely below 2.0 V. When the applied potential was below 1.3 V, methyl orange degradation rates on porous TiO2 film increased from 5% at 0 V to 65.3% at 1.3 V, and degradation rates on smooth TiO2 film changed from 2.2% at 0 V to 61.1% at 1.3 V. Electro-assisted photocatalytic degradation rate on porous film was better than that on smooth film in the whole electrolyte concentration range. Electro-assisted degradation exhibited the same rising trend along with reaction time on the porous and smooth films.


2011 ◽  
Vol 230-232 ◽  
pp. 126-130
Author(s):  
Wen Jie Zhang ◽  
Ke Xin Li

PEG1000 was used as template to prepare porous TiO2 film by sol-gel method. The functions of applied potential and concentration of NaHCO3 to the photoelectrocatalytic degradation of methyl orange on porous and smooth TiO2 films were investigated. Methyl orange degradation rate has two optimal values at the applied potential of 0.8 V and 1.8 V. The addition of PEG may have negative effect on photoelectrocatalytic activity of TiO2 film. The degradation rate increases with increasing NaHCO3 concentration from 0 up to 0.05 mol/l, and then it declines after further increase of electrolyte concentration. After 100 min of reaction, the degradation rates on the films prepared without and with PEG addition are 63.78% and 65.22%, respectively.


2012 ◽  
Vol 457-458 ◽  
pp. 1169-1172
Author(s):  
Wen Jie Zhang ◽  
Mei Ling Hu ◽  
Hong Bo He

Porous and smooth TiO2 film electrodes prepared by sol-gel method were used on methyl orange degradation by an electro-assisted photocatalytic degradation process. When using the applied potential along, there was no obvious degradation of methyl orange whether using TiO2 film electrode prepared using PEG template or not. The largest difference between the two electrodes appears at potential of 0.7 V in 0.05 mol/l NaCl solution, and the porous electrode shows better degradation activity in electro-assisted photocatalytic degradation. When NaCl concentration was 0.07 mol/l, degradation rates on porous and smooth film electrodes were 51.16% and 32.35 %, respectively. After 100 min of irradiation, 90% of the methyl orange degraded on the porous TiO2 film electrode, and 79.87% of the methyl orange degraded on the smooth TiO2 film electrode.


2012 ◽  
Vol 496 ◽  
pp. 146-149
Author(s):  
Yu Feng Sun ◽  
Ke Xin Li ◽  
Wen Jie Zhang

Three kinds of templates were used to prepare porous boron doped TiO2 based photocatalysts by sol-gel method. Adsorption of methyl orange on the materials maintained with very slight variation in template adding concentration. With increasing PEG1000 concentration, photocatalytic activity of the material presented obviously variation. The optimal concentration appeared at 0.08 mol/l, where methyl orange degradation rate was 24.7%. When PEG400 concentration was 0.14 mol/l, photocatalytic degradation rate of methyl orange on the material was 17.9%. In the template concentration range from 0.06 mol/l to 0.16 mol/l, degradation activity occurred at CTAB concentration of 0.10 mol/l showed the optimal value of 31.1%, which was the highest among the three kinds of templates.


2012 ◽  
Vol 487 ◽  
pp. 640-643
Author(s):  
Wen Jie Zhang ◽  
Fei Fei Bi ◽  
Hong Bo He

Porous and smooth TiO2 film electrodes prepared by sol-gel method were used on methyl orange degradation by an electro-assisted photocatalytic degradation process. The results indicates that methyl orange was barely degraded under the potential alone, availing that potential under 1.8 V had no noticeable effect on removal of the dye. The porous film electrode showed better electro-assisted photocatalytic activity than the smooth film electrode when the potential was above 0.6 V. The porous film showed better activity than the smooth film in nearly all the concentration range except for the highest one. The porous film exhibited better activity than the smooth one.


2014 ◽  
Vol 618 ◽  
pp. 76-80
Author(s):  
Hong Lun Wang ◽  
Qin Deng ◽  
Hui Liu ◽  
Yan Zi Zhou ◽  
Yan Zong Zhang

In this paper, TiO2/modified expandable graphite composite material was prepared through sol-gel method with the carrier of modified expandable graphite.The influence of this composite material prepared in different calcination environment and with different times of load on the effect of methyl orange solution’s photocatalytic degradation was studied. Results show that the photocatalytic effect is better by using the composite material with the same times of load in aerobic calcination than that in anaerobic calcination. In the same calcination environment, the photocatalytic effect with 5 times of load is better than that with 1, 2, 3 and 4 times of load. Whether in the aerobic calcination or in the anaerobic calcination, the photocatalytic effect is better if the composite material is loaded 5 times.


2011 ◽  
Vol 399-401 ◽  
pp. 666-672
Author(s):  
Shi Xiang Lu ◽  
Lian Dai ◽  
Wen Guo Xu ◽  
Cheng Xiang Ma

Quantum-sized TiO2 had been prepared by using Ti(n-OC4H9)4 as the raw material via a microwave-assisted sol-gel method. The influence of different processing temperature and time on the size of TiO2 was researched. The TiO2 was characterized by transmission electron microscopy (TEM) and X-ray diffraction analysis (XRD). The prepared TiO2 presents anatase phase structure by TEM and XRD. The photocatalytic activity of TiO2 was evaluated by the degradation rate of methyl orange in aqueous solution. The particle size of TiO2 was about 9.10 nm when the processing temperature was 160°C and the processing time was 90 min (160°C-90min), and the photocatalytic performance was the best under this size. When the initial concentration of methyl orange was 10 mg/L and the amount of quantum-sized TiO2 was 0.6 g/L, the degradation rate of methyl orange under ultraviolet and solar irradiation at room temperature in 60 min were 40% and 86%, respectively.


2010 ◽  
Vol 26-28 ◽  
pp. 489-492
Author(s):  
Xuan Xiao ◽  
Jia Wei Bai ◽  
Wen Jie Zhang ◽  
Yuan Di Li

Photoelectrocatalytic (PEC) degradation efficiencies of a suspended TiO2 and Ti electrodes composite system in different ammonium salt solutions were investigated. Electrolyte type and concentration as well as the applied potential on the Ti electrodes had significant effects on photoelectrocatalytic degradation and electro-degradation efficiencies. PEC degradation and electro-degradation of methyl orange increased with increasing applied potential and electrolyte concentration. PEC degradation is much more powerful than electro-degradation. PEC degradation efficiency in (NH4)3PO4•3H2O solution is the highest 93.4%, whereas the efficiency in NH4Cl solution shows the worst 73.1%, which is even less than that of photocatalytic process alone. PEC degradation efficiencies in (NH4)2SO4 and NH4HCO3 solutions are 88.8% and 85.9% respectively, indicating no noticeable improvement compared with photocatalytic process.


2011 ◽  
Vol 287-290 ◽  
pp. 2199-2202
Author(s):  
Gui Qin Hou ◽  
Wen Li Zhang ◽  
Shui Jing Gao ◽  
Xiao Yan Wang

The ZnFe2O4 and TiO2 nanocomposite films was prepared by Sol-Gel method on conductive glass, and the influence factors of it’s photoelectrocatalytic performence such as the film layer, pole and voltage was investigated. The results indicated that: the photocatalytic effects of composite films with ZnFe2O4+ TiO2+ ZnFe2O4 was the best. The decomposing ratio of methyl orange with the photoelectrocatalysis of composite films at voltage 0.2-6V all increased unstably.At the same time, the distance from films to pole plank also had the effects on the photocatalytic activities of the films.


Sign in / Sign up

Export Citation Format

Share Document