Photoelectrocatalytic Properties of Porous TiO2 Films Prepared Using ODA as Template

2012 ◽  
Vol 457-458 ◽  
pp. 521-524 ◽  
Author(s):  
Wen Jie Zhang ◽  
Qian Li ◽  
Hong Bo He

The functions of applied potential to the photoelectrocatalytic degradation process of methyl orange were investigated. When using 0.05 M NaCl and under different applied potentials, the degradation rate increased obviously with increasing applied potential. When the applied potential was between 0.6 V-1.0 V, the degradation rate was enhanced drastically. The detected current values got larger as the applied potential increased from 0 up to 1.2 V. There was no direct electro-degradation to the dye in the solution. The applied potential and the irradiated light had synergetic effect when they were applied to the solution at the same time. While after irradiation for 0 to 60 min, with the increasing reaction time, methyl orange absorption peak intensity shrank obviously. The azo and benzene groups in methyl orange degraded totally under photocatalytic process.

2012 ◽  
Vol 433-440 ◽  
pp. 411-415
Author(s):  
Wen Jie Zhang ◽  
Ke Xin Li ◽  
Jia Wei Bai

Porous TiO2 film was prepared by a sol-gel method using PEG1000 as pore forming template. The porous film and normal film were used as electrodes in a photoelectrocatalytic reactor. The functions of applied potential and concentration of NaH2PO4 to the photoelectrocatalytic degradation process of methyl orange were investigated. The results show that methyl orange cannot be degraded solely by the applied potential. Under the applied potential of 2 V, 49.9% of the initial dye can be removed on the normal TiO2 film electrode, which is much better than the 31.1% removal rate on the porous TiO2 film electrode. The normal TiO2 film electrode has better performance than the porous TiO2 film in the whole NaH2PO4 concentration range. After 80 min of reaction, degradation rate is 93.7% on the normal TiO2 film electrode. After 100 min of reaction, degradation rate is 89.7% on the porous TiO2 film electrode.


2010 ◽  
Vol 26-28 ◽  
pp. 489-492
Author(s):  
Xuan Xiao ◽  
Jia Wei Bai ◽  
Wen Jie Zhang ◽  
Yuan Di Li

Photoelectrocatalytic (PEC) degradation efficiencies of a suspended TiO2 and Ti electrodes composite system in different ammonium salt solutions were investigated. Electrolyte type and concentration as well as the applied potential on the Ti electrodes had significant effects on photoelectrocatalytic degradation and electro-degradation efficiencies. PEC degradation and electro-degradation of methyl orange increased with increasing applied potential and electrolyte concentration. PEC degradation is much more powerful than electro-degradation. PEC degradation efficiency in (NH4)3PO4•3H2O solution is the highest 93.4%, whereas the efficiency in NH4Cl solution shows the worst 73.1%, which is even less than that of photocatalytic process alone. PEC degradation efficiencies in (NH4)2SO4 and NH4HCO3 solutions are 88.8% and 85.9% respectively, indicating no noticeable improvement compared with photocatalytic process.


2011 ◽  
Vol 230-232 ◽  
pp. 126-130
Author(s):  
Wen Jie Zhang ◽  
Ke Xin Li

PEG1000 was used as template to prepare porous TiO2 film by sol-gel method. The functions of applied potential and concentration of NaHCO3 to the photoelectrocatalytic degradation of methyl orange on porous and smooth TiO2 films were investigated. Methyl orange degradation rate has two optimal values at the applied potential of 0.8 V and 1.8 V. The addition of PEG may have negative effect on photoelectrocatalytic activity of TiO2 film. The degradation rate increases with increasing NaHCO3 concentration from 0 up to 0.05 mol/l, and then it declines after further increase of electrolyte concentration. After 100 min of reaction, the degradation rates on the films prepared without and with PEG addition are 63.78% and 65.22%, respectively.


2012 ◽  
Vol 487 ◽  
pp. 635-639
Author(s):  
Wen Jie Zhang ◽  
Hong Liang Xin ◽  
Hong Bo He

Porous and smooth TiO2 film electrodes prepared by sol-gel method were used on methyl orange degradation by an electro-assisted photocatalytic degradation process. Methyl orange cannot be degraded under applied potential solely below 2.0 V. When the applied potential was below 1.3 V, methyl orange degradation rates on porous TiO2 film increased from 5% at 0 V to 65.3% at 1.3 V, and degradation rates on smooth TiO2 film changed from 2.2% at 0 V to 61.1% at 1.3 V. Electro-assisted photocatalytic degradation rate on porous film was better than that on smooth film in the whole electrolyte concentration range. Electro-assisted degradation exhibited the same rising trend along with reaction time on the porous and smooth films.


2014 ◽  
Vol 809-810 ◽  
pp. 860-866 ◽  
Author(s):  
Ce Wang ◽  
Long Gui Peng ◽  
Qiao Qiao Zhang ◽  
Lu Ying Qiu ◽  
Zai Yong Zhang

A intercalated TiO2photocatalyst loaded bentonite was prepared by sol-gel method. The effect of reaction time, reaction temperature,the amount of butyl titanate and other process parameters on prepared material of degradation of methyl orange,as well as the relationship between the concentration of methyl orange on degradation process and illumination time were discussed by single factor method.The results showed : the first absorbance of the intercalated TiO2photocatalyst loaded bentonite material was 0.342 and the average absorbance was respectively 0.7402 through 5 washing after the intercalated TiO2photocatalyst loaded bentonite irradiated at UV-irradiation 1.5h to 20mg/L methyl orange.


Author(s):  
Linsheng Zeng ◽  
Zichun He ◽  
Yongping Luo ◽  
Jitao Xu ◽  
Jiansheng Chen ◽  
...  

Abstract In this work, highly ordered titanium dioxide nanotube arrays (TNTs) were first prepared by anodic oxidation method. Then, g-C3N4/TNTs heterojunctions were prepared by ultrasonically loading graphitic carbon nitride (g-C3N4) onto the TNTs. The morphology and crystal structure of TNTs and g-C3N4/TNTs were characterized by SEM and XRD. The photoelectrocatalytic (PEC) degradation of methyl orange (MO) by TNTs and g-C3N4/TNTs was studied in a PEC degradation system. The photocatalytic (PC), electrocatalytic (EC), and PEC degradation properties were compared, and the effect of pollutant concentration on the degradation performance of the catalysts was analyzed. According to the experimental results, the degradation rate of MO with TNTs only reaches 65.1% after 120 min, while the degradation rate of MO with g-C3N4/TNTs reaches 84.6% in the same time. Due to the synergistic effect of light and electricity, the PEC degradation efficiency of the two catalysts is greater than the sum of PC and EC degradation, proving that g-C3N4/TNTs heterojunctions provide excellent PEC performance for the degradation of MO.


2013 ◽  
Vol 807-809 ◽  
pp. 2739-2742
Author(s):  
Peng Wei Huo ◽  
Mao Bin Wei ◽  
Xin Lin Liu ◽  
Dan Dan Wang ◽  
Zi Yang Lu ◽  
...  

The photocatalytic degradation process of waste water was usually influenced by many factors, such as different ions, addition reagent and pH value. In order to investigate the effect of ions strength in the photocatalytic process, the anions and cations were systematically investigated with P25 TiO2 photocatalyst with Rhodamine B (RB) as waste water in this work. The results showed that the cations of low valence showed minimum negative effect on degradation rate and the most anions showed enhance the degradation rate of RB. The ions strength showed random in the photocatalytic process.


2012 ◽  
Vol 424-425 ◽  
pp. 981-984
Author(s):  
Feng Qi Li ◽  
Wen Jie Zhang

When potential was less than 1.2 V, electro-degradation rate was not more than 1.2% on both the films prepared using PEG or not. The film prepared with addition of PEG showed better degradation rates in the whole potential range than the film prepared without using of PEG. The highest degradation rates existed at 1.1 V of applied potential for both of the film electrodes, where degradation rate on film with PEG was 93.6% and the rate was 92.2% on the film without PEG. Methyl orange degradation rates increased with increasing KCl concentration from 0 to 0.7 mol/l, while degradation rates dropped down at even higher potential. Degradation rates increased with prolonged irradiation time for both of the two film electrodes.


Author(s):  
Zahia Benredjem ◽  
Karima Barbari ◽  
Imene Chaabna ◽  
Samia Saaidia ◽  
Abdelhak Djemel ◽  
...  

Abstract The Advanced Oxidation Processes (AOPs) are promising environmentally friendly technologies for the treatment of wastewater containing organic pollutants in general and particularly dyes. The aim of this work is to determine which of the AOP processes based on the Fenton reaction is more effective in degrading the methyl orange (MO) dye. The comparative study of the Fenton, photo-Fenton (PF) and electro-Fenton (EF) processes has shown that electro-Fenton is the most efficient method for oxidizing Methyl Orange. The evolution of organic matter degradation was followed by absorbance (discoloration) and COD (mineralization) measurements. The kinetics of the MO degradation by the electro-Fenton process is very rapid and the OM degradation rate reached 90.87% after 5 min. The influence of some parameters such as the concentration of the catalyst (Fe (II)), the concentration of MO, the current density, the nature and the concentration of supporting electrolyte was investigated. The results showed that the degradation rate increases with the increase in the applied current density and the concentration of the supporting electrolyte. The study of the concentration effect on the rate degradation revealed optimal values for the concentrations 2.10−5 M and 75 mg L−1 of Fe (II) and MO respectively.


2020 ◽  
Vol 18 (1) ◽  
pp. 129-137
Author(s):  
Yayuk Astuti ◽  
Rizka Andianingrum ◽  
Abdul Haris ◽  
Adi Darmawan ◽  

AbstractSynthesis of bismuth oxide synthesis through the precipitation method using H2C2O4 and Na2CO3 precipitating agents, identification of physicochemical properties and its photocatalysis activity for methyl orange degradation were conducted. The bismuth oxide synthesis was undertaken by dissolving Bi(NO3)3.5H2O in HNO3, then added precipitating agents to form precipitate. The results showed that bismuth oxide produced by H2C2O4 precipitating agent was a yellow powder containing a mixture of α-Bi2O3 (monoclinic) and β-Bi2O3 (tetragonal), porous with size of 28-85 μm. Meanwhile, the use of Na2CO3 as precipitating agent resulted in bismuth oxide consisting of α-Bi2O3 and β-Bi2O3 and Bi2O4, irregular shape without pore being 40-115 μm in size. Bismuth oxide synthesized with H2C2O4 precipitating agent showed higher photocatalytic activity compared to bismuth oxide synthesized using Na2CO3 on degrading methyl orange dye with degradation rate constants of 2.35x10-5 s-1 for H2C2O4 and 1.81x10-5 s-1 for Na2CO3.


Sign in / Sign up

Export Citation Format

Share Document