The Study of Diffraction Ray Tracing on the Surface of Airplane

2012 ◽  
Vol 433-440 ◽  
pp. 6345-6349
Author(s):  
Li Peng Deng ◽  
Xiao Ying Zhao ◽  
You Feng Chen ◽  
Wang Jing

This article makes the surface of airplane into quadrilateral gridding by using the method of discrete gridding generation, and calculates the data of gridding by using the classical Dijkstra algorithm (local algorithm) which can seek the shortest path from the start point and the end point. With that we can achieve diffraction ray tracing. This method can be used for any convex surface of the diffraction ray tracing.

2009 ◽  
Vol 419-420 ◽  
pp. 557-560 ◽  
Author(s):  
Rui Li

Shortest path is the core issue in application of WebGIS. Improving the efficiency of the algorithm is an urgent requirement to be resolved at present. By the lossy algorithm analyzing, which is the current research focus of the shortest path algorithm to optimize, utilizing adjacency table of storage structures, restricted direction strategy and binary heap technology to optimize the algorithm, thereby reduce the scale of algorithm to improve the operating efficiency of algorithm. This scheme has been applied in the simulation of the data downloaded from the Guangdong Provincial Highway Network Information System and satisfactory results have been obtained.


Author(s):  
G. H. Shirdel ◽  
B. Vaez-Zadeh

A hypergraph is given by [Formula: see text], where [Formula: see text] is a set of vertices and [Formula: see text] is a set of nonempty subsets of [Formula: see text], the member of [Formula: see text] is named hyperedge. So, a hypergraph is a nature generalization of a graph. A hypergraph has a complex structure, thus some researchers try to transform a hypergraph to a graph. In this paper, we define two graphs, Clique graph and Persian graph. These relations are one to one. We can find the shortest path between two vertices in a hypergraph [Formula: see text], by using the Dijkstra algorithm in graph theory on the graphs corresponding to [Formula: see text].


2019 ◽  
Vol 25 ◽  
pp. 01001
Author(s):  
Yang Li ◽  
Luhua Zhao ◽  
Entong Wang

In view of the important link of vehicle dispatching under the network-type trailer-drop transport strategy of vehicle sharing, this paper uses JAVA to implement the Dijkstra algorithm for the transportation route based on the distance between stations and the demand of freight transportation, so as to find the shortest path, and then through the model of trailer-drop transport, an example is given. The advantages of this vehicle scheduling are analyzed.


2012 ◽  
Vol 532-533 ◽  
pp. 1775-1779
Author(s):  
Jian Lian ◽  
Yan Zhang ◽  
Cheng Jiang Li

We present an efficient K-shortest paths routing algorithm for computer networks. This Algorithm is based on enhancements to currently used link-state routing algorithms such as OSPF and IS-IS, which are only focusing on finding the shortest path route by adopting Dijkstra algorithm. Its desire effect to achieve is through the use of K-shortest paths algorighm, which has been implemented successfully in some fileds like traffic engineering. The correctness of this Algorithm is discussed at the same time as long as the comparison with OSPF.


Geophysics ◽  
2020 ◽  
Vol 85 (6) ◽  
pp. T331-T342
Author(s):  
Xing-Wang Li ◽  
Bing Zhou ◽  
Chao-Ying Bai ◽  
Jian-Lu Wu

In a viscoelastic anisotropic medium, velocity anisotropy and wave energy attenuation occur and are often observed in seismic data applications. Numerical investigation of seismic wave propagation in complex viscoelastic anisotropic media is very helpful in understanding seismic data and reconstructing subsurface structures. Seismic ray tracing is an effective means to study the propagation characteristics of high-frequency seismic waves. Unfortunately, most seismic ray-tracing methods and traveltime tomographic inversion algorithms only deal with elastic media and ignore the effect of viscoelasticity on the seismic raypath. We have developed a method to find the complex ray velocity that gives the seismic ray speed and attenuation in an arbitrary viscoelastic anisotropic medium, and we incorporate them with the modified shortest-path method to determine the raypath and calculate the real and imaginary traveltime (wave energy attenuation) simultaneously. We determine that the complex ray-tracing method is applicable to arbitrary 2D/3D viscoelastic anisotropic media in a complex geologic model and the computational errors of the real and imaginary traveltime are less than 0.36% and 0.59%, respectively. The numerical examples verify that the new method is an effective and powerful tool for accomplishing seismic complex ray tracing in heterogeneous viscoelastic anisotropic media.


Sign in / Sign up

Export Citation Format

Share Document