Springback Analysis of TC4 Titanium Alloy Complex Part with Double Curvature under Single Point Incremental Forming Process

2012 ◽  
Vol 468-471 ◽  
pp. 1094-1098
Author(s):  
Fen Qiang Li ◽  
Jian Hua Mo

To make the structure of aircraft meet the aerodynamic requirements, complex lightweight structures such as double curvature shape and high-strength lightweight materials such as titanium alloy are generally used in design and forming of aircraft skin parts. But the forming processes and problems aimed to this kind of parts remain to be investigated further now. In this paper, based on single point incremental forming process, the TC4 titanium alloy aircraft parts with a complex double curvature was studied. In order to reduce the springback during the forming process an appropriate addendum surface was added to the part surface, and then ABAQUS software was applied to carry out numerical simulation of the forming and springback process. The results show that springback of complex titanium part with double curvature is small at both ends of part while large in the middle and the distribution of springback orientation depends on the curvature. For that the part is difficult to form by single point incremental forming process without springback compensation, so the tool path needs to be improved firstly. The simulation results can play a role for guiding the parameters selection and the compensated surface design of single point incremental forming process which can achieve the cold forming of parts with complex structure for poor formability materials.

2015 ◽  
Vol 809-810 ◽  
pp. 277-282
Author(s):  
Khalil Ibrahim Abass

The Single Point Incremental Forming Process (SPIF) is a forming technique of sheet material based on layered manufacturing principles. The forming tool is moved along the tool path while the edges of sheet material are clamped. The finished part is manufactured by the CNC machine. SPIF involves extensive plastic deformation and the description of the process is more complicated by highly nonlinear boundary conditions, namely contact and frictional effects have been accomplished. However, due to the complex nature of these models, numerical approaches dominated by the FEA are now in widespread use. The paper presents the data and main results of a study on effect of using cover blank in SPIF through FEA. The considered SPIF has been studied under certain process conditions referring to the test work piece, tool, etc., applying ANSYS 11.0. The results show that the simulation model can predict an ideal profile of processing track, spring back error of SPIF, the behavior of contact tool-work piece, the product accuracy by evaluation its thickness and strain distributions, the contact status and chattering among surface interface tool-work piece.


2011 ◽  
Vol 264-265 ◽  
pp. 188-193 ◽  
Author(s):  
G. Palumbo ◽  
Marco Brandizzi ◽  
G. Cervelli ◽  
M. Fracchiolla

The present work focuses the attention on the Single Point Incremental Forming (SPIF) of the Titanium (Ti) alloy Ti-6Al-4V. Tensile tests were carried out using the optical strain measurement system Aramis3D, in order to determine the mechanical behaviour of the alloy and to investigate the anisotropy of such alloy. Finite Element (FE) simulations of the SPIF process (using ABAQUS/explicit) were performed using a simple but non-axialsymmetric shape (truncated pyramid) with the aim of investigating the effect of both the tool/pitch ratio (D/p) and the draw angle (α), taking into account the anisotropic behaviour. The analysis of plastic strains and thinning maps, together with the evaluation of shape errors originated by the forming process, highlighted that the parameter D/p plays a key role in the SPIF. Results from the preliminary FE analysis were used for investigating the production by SPIF of an automotive component (car door shell). A specific subroutine was created by the authors for automatically generating the tool path to be used in both the FE simulations and the manufacturing of parts by SPIF on a CNC milling machine.


Materials ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 4719
Author(s):  
Kyu-Seok Jung ◽  
Jae-Hyeong Yu ◽  
Wan-Jin Chung ◽  
Chang-Whan Lee

Incremental sheet metal forming can manufacture various sheet metal products without a dedicated punch and die set. In this study, we developed a two-stage incremental forming process to decrease shape errors in the conventional incremental forming process. The forming process was classified into the first single point incremental forming (1st SPIF) process for forming a product and the counter single point incremental forming (counter SPIF) process to decrease shape error. The counter SPIF gives bending deformation in the opposite direction. Furthermore, the counter SPIF compensates for shape errors, such as section deflection, skirt spring-back, final forming height, and round. The tool path of the counter SPIF has been optimized through a relatively simple optimization method by modifying the tool path of the previous step. The tool path of the 1st SPIF depends on the geometry of the product. An experiment was performed to form a circular cup shape to verify the proposed tool path of the 1st and counter SPIF. The result confirmed that the shape error decreased when compared to the conventional SPIF. For the application, the ship-hull geometry was adopted. Experimental results demonstrated the feasibility of the two-stage incremental forming process.


2013 ◽  
Vol 554-557 ◽  
pp. 2221-2229 ◽  
Author(s):  
João B.S. Farias ◽  
Miguel A.B.E. Martins ◽  
Daniel G. Afonso ◽  
Sonia R.H. Marabuto ◽  
Jorge A. Ferreira ◽  
...  

Single point incremental forming has attracted the interest of researchers in the last decade for the production of prototypes and small batch production of sheet-based parts [1, 2]. This technique allows the manufacture of parts without using expensive die sets. The SPIF (Single point incremental forming) process can be performed on different equipments such as adapted CNC milling machines, serial robots and built proposed machines [3]. Every solution has advantages and disadvantages. This work presents the CAD/CAM strategies for a parallel kinematics SPIF machine, designed and built at the University of Aveiro [3]. This machine brings a new approach to the SPIF industry. The machinery used to perform SPIF operations has limitations in their work volume with limited movements and in the magnitude of applicable forces. With that in mind, this machine was projected to overcome that obstacle, and was provided with a system with 6 degrees of freedom, while maintaining the ability to apply high loads. The disadvantage is the increase in volume occupied by the kinematic system. The manufacture of new parts could be reached out with more flexibility on the chosen tool path. The first step is the product design in the commercial CAD system. Next step is generating the tool path of the forming tool. This step is very important to achieve the desired part shape. It is used a commercial CAM system (EdgeCAM 2012®), which has resources from three up to five axis strategies. The last step is to send the information to the machine’s control system, based on real-time software. This paper will describe each step with more details.


Materials ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6372
Author(s):  
Valentin Oleksik ◽  
Tomasz Trzepieciński ◽  
Marcin Szpunar ◽  
Łukasz Chodoła ◽  
Daniel Ficek ◽  
...  

Incremental sheet forming of titanium and its alloys has a significant role in modern manufacturing techniques because it allows for the production of high-quality products with complex shapes at low production costs. Stamping processes are a major contributor to plastic working techniques in industries such as automotive, aerospace and medicine. This article reviews the development of the single-point incremental forming (SPIF) technique in titanium and its alloys. Problems of a tribological and microstructural nature that make it difficult to obtain components with the desired geometric and shape accuracy are discussed. Great emphasis is placed on current trends in SPIF of difficult-to-form α-, α + β- and β-type titanium alloys. Potential uses of SPIF for forming products in various industries are also indicated, with a particular focus on medical applications. The conclusions of the review provide a structured guideline for scientists and practitioners working on incremental forming of titanium and titanium alloy sheets. One of the ways to increase the formability and minimize the springback of titanium alloys is to treat them at elevated temperatures. The main approaches developed for introducing temperature into a workpiece are friction heating, electrical heating and laser heating. The selection of an appropriate lubricant is a key aspect of the forming process of titanium and its alloys, which exhibit unfavorable tribological properties such as high adhesion and a tendency to adhesive wear. A review of the literature showed that there are insufficient investigations into the synergistic effect of rotational speed and tool rotation direction on the surface roughness of workpieces.


2011 ◽  
Vol 12 (3) ◽  
Author(s):  
Meftah Hrairi ◽  
Salah B. M. Echrif

Single Point Incremental Forming (SPIF) is a promising sheet-metal-forming process that permits the manufacturing of small to medium-sized batches of complex parts at low cost. It allows metal forming to work in the critical ‘necking-to-tearing' zone which results in a strong thinning before failure if the process is well designed. Moreover, the process is complex due to the number of variables involved. Thus, it is not possible to consider that the process has been well assessed; several remaining aspects need to be clarified. The objective of the present paper is to study some of these aspects, namely, the phenomenon of the wall thickness overstretch along depth and the effect of the tool path on the distribution of the wall thickness using finite element simulations.Abstrak: Pembentukan Tokokan Mata Tunggal (Single Point Incremental Forming (SPIF)) merupakan satu proses pembentukan kepingan logam yang membolehkan pembuatan dalam jumlah yang kecil hingga sederhana, bahagian-bahagian yang kompleks pada kos yang rendah. Jika proses ini direka dengan baik, kaedah ini membolehkan pembentukan logam yang baik terhasil. Jika tidak, semasa peringkat zon kritikal ‘perleheran-ke-pengoyakan' menyebabkan penipisan keterlaluan yang boleh menyebabkan logam tersebut rosak. Tambahan pula, proses ini agak kompleks, kerana ia melibatkan beberapa pemboleh ubah. Maka, walaupun proses ini telah dinilaikan seeloknya; masih terdapat beberapa aspek lain yang perlu diperjelaskan. Objektif kertas ini dibentangkan adalah untuk mengkaji beberapa aspek tertentu, seperti, ketebalan dinding regangan berlebihan di sepanjang kedalaman dan kesan tool path (beberapa siri posisi koordinat untuk menentukan pergerakan alatan memotong ketika operasi memesin) terhadap pengagihan ketebalan dinding menggunakan simulasi unsur terhingga.


2007 ◽  
Vol 344 ◽  
pp. 583-590 ◽  
Author(s):  
M. Skjoedt ◽  
M.H. Hancock ◽  
N. Bay

Single point incremental forming (SPIF) is a relatively new sheet forming process. A sheet is clamped in a rig and formed incrementally using a rotating single point tool in the form of a rod with a spherical end. The process is often performed on a CNC milling machine and the tool movement is programed using CAM software intended for surface milling. Often the function called profile milling or contour milling is applied. Using this milling function the tool only has a continuous feed rate in two directions X and Y, which is the plane of the undeformed sheet. The feed in the vertical Z direction is done in the same angular position in the XY plane along a line down the side of the work piece. This causes a scarring of the side and also results in a peak in the axial force when the tool is moved down. The present paper offers a solution to this problem. A dedicated program uses the coordinates from the profile milling code and converts them into a helical tool path with continuous feed in all three directions. Using the helical tool path the scarring is removed, the part is otherwise unchanged and a major disadvantage of using milling software for SPIF is removed. The solution is demonstrated by SPIF of three different geometries: a pyramid, a cone and a complex part.


Sign in / Sign up

Export Citation Format

Share Document