Research on Blade with Particle Dampers

2012 ◽  
Vol 479-481 ◽  
pp. 1307-1309
Author(s):  
Zhao Wang Xia ◽  
Yuan Yuan Fang

The performance of particle damper is highly nonlinear whose energy dissipation is derived from a combination of mechanisms including plastic collisions, friction, and momentum transfer between particles. Particle damper can be applied in extreme temperature environments. In this paper, an investigation on particle damper is performed analytically and experimentally. A simulation algorithm and results of simulative studies aimed at understanding the effects of parameters of particle damper are presented. Parameters considered include damper geometry, particle material and particle size.

2011 ◽  
Vol 133 (4) ◽  
Author(s):  
Zhaowang Xia ◽  
Xiandong Liu ◽  
Yingchun Shan

Particle damper comprises granular particle enclosed in a container within a vibrating structure. The performance of particle damper is strongly nonlinear whose energy dissipation is derived from a combination of mechanisms including plastic collisions and friction between particles or particles and cavity walls. Particle damper containing suitable materials may be effective in a wider temperature range than most other types of passive damping devices. Therefore, it may be applied in extreme temperature environments where most conventional dampers would fail. It may also attenuate vibrations over a broad range of frequencies and cost less. Researches have indicated that particle damper could be a viable option for extreme environment applications. However, to date, no effort has come forward the can prove analytically or numerically that the particle damping is a viable solution for vibration suppression under centrifugal forces. In this paper, a coupling simulation algorithm based on the discrete element method and finite element method and the results of simulative studies aimed at understanding the effects of parameters of particle damper under centrifugal forces are presented. And the results show that the presented coupling simulation algorithm is effective and the analyses of dynamic feature of a plate with particle dampers under centrifugal loads are reasonable.


Author(s):  
Shilong Li ◽  
Jiong Tang

Particle damper is formed by granular particles enclosed in a container which is attached to or embedded in a vibrating structure. The energy dissipation mechanism of a particle damper is highly nonlinear, and derived from a combination of collision/impact and friction among particles and between particles and the enclosure. Meanwhile, the coupling between particle dampers and the host structure and among multiple dampers further increases the difficulty to analyze the particle damping performance. In this paper, a new coupling method is developed to integrate the continuous host system with multiple particle dampers to analyze the energy transfer between the host structure and the dampers. The discrete element method (DEM) is employed to describe and analyze the particle motion inside each damper, which accurately accounts for various energy dissipation mechanisms of the particle damping system. In order to enhance the computational efficiency, a Verlet table combined with LC method is also used to improve the contact detection since the long time simulation is needed to perform damping analysis under a wide range of frequencies. The damping effect under different arrangements of particle dampers on a clamped-free beam is analyzed, and the results indicate that the optimal positions of dampers not only rely on the mode shape of the system, but also are dependent upon the excitation level.


2012 ◽  
Vol 178-181 ◽  
pp. 2820-2823 ◽  
Author(s):  
Zhao Wang Xia ◽  
Jian Wei Qin ◽  
Hong Ren Pan

Particle damper comprises granular particle enclosed in a container within a vibrating structure. It may be applied in extreme temperature environments where most conventional dampers would fail. In this paper, the feasibility of an application of particle damping to the noise and vibration control of a drum brake is analyzed. A coupling simulation algorithm based on the discrete element method and finite element method is presented. This method makes it possible to consider parameters of particle damper such as the particle size, ratio and particle material and so on. The validity of this numerical method is examined by a comparison of the experimental results. And the results show that the presented particle damping is effective and the analyses of dynamic feature of a drum brake with particle dampers are reasonable.


2021 ◽  
Vol 23 (3) ◽  
Author(s):  
Niklas Meyer ◽  
Robert Seifried

AbstractParticle damping is a promising damping technique for a variety of technical applications. However, their non-linear behavior and multitude of influence parameters, hinder currently its wide practical use. So far, most researchers focus either on determining the energy dissipation inside the damper or on the overall damping behavior when coupled to a structure. Indeed, currently almost no knowledge exchange between both approaches occurs. Here, a bridge is build to combine both techniques for systems under forced vibrations by coupling the energy dissipation field and effective particle mass field of a particle damper with a reduced model of a vibrating structure. Thus, the overall damping of the structure is estimated very quickly. This combination of both techniques is essential for an overall efficient dimensioning process and also provides a deeper understanding of the dynamical processes. The accuracy of the proposed coupling method is demonstrated via a simple application example. Hereby, the energy dissipation and effective mass of the particle damper are analyzed for a large excitation range first using a shaker setup. The particle damper exhibits multiple areas of different efficiency. The underlying structure is modeled using FEM and modal reduction techniques. By coupling both parts it is shown that multiple eigenmodes of the structure are highly damped using the particle damper. The damping prediction using the developed coupling procedure is validated via experiments of the overall structure with particle damper.


2019 ◽  
Vol 2019 ◽  
pp. 1-16
Author(s):  
Xiaowei Li ◽  
Yue Yang ◽  
Weixing Shi

Particle dampers are nonlinear vibration control devices. The surface property has a great influence on the performance of the particle damper, but it is difficult to be considered and analyzed. This paper firstly gives a view of how to establish a theoretic model of the particle damper. The dynamic equation and energy dissipation coefficient of collision are revised from the Hertz contact theory in the proposed theoretic model, considering the friction of particles. Then, a contrastive collision model relying on the finite element method is established to verify the reasonability of the theoretic model. The effects of different factors which will have an influence on the performance of the particle damper are discussed, and several conclusions on how to optimize the particle damper are proposed. Except for the aforementioned dynamic analysis, this paper also presents a particle damping index to evaluate the capability of energy dissipation of different materials, in order to facilitate the material selection in the practical design. Finally, an experiment is developed to verify the character of the collision and energy dissipation. The feasibility of the proposed method to estimate the surface property of different particles is validated by the free vibration experiment.


Author(s):  
Neil D. Sims ◽  
Ashan Amarasinghe ◽  
Keith Ridgway

It is well known that the chatter stability of a machining process can be improved by increasing the structural damping of the system. To date this approach has been effectively used on various components of the machining system, for example boring bars, milling tools, and the machine structure itself. Various damping treatments have been proposed, including tuned vibration absorbers, active methods, and impact dampers. However, to date there has been little or no work to investigate the issue of particle dampers for this application. This special class of damper comprises a container of thousands of small granular particles which dissipate energy by friction and impact when the container vibrates. The resulting behaviour is highly nonlinear but can provide very high levels of damping across a wide frequency range. In the present study, particle dampers were applied to a workpiece to mitigate chatter during milling, and the limiting critical depth of cut was increased by an order of magnitude. This article gives an overview of the particle damper’s behaviour and key design parameters. Cutting trials employing the device are then described.


1988 ◽  
Vol 331 (1) ◽  
pp. 63-69 ◽  
Author(s):  
J. Galin ◽  
G. Ingold ◽  
U. Jahnke ◽  
D. Hilscher ◽  
M. Lehmann ◽  
...  

2009 ◽  
Vol 319 (1-2) ◽  
pp. 91-118 ◽  
Author(s):  
C.X. Wong ◽  
M.C. Daniel ◽  
J.A. Rongong

Sign in / Sign up

Export Citation Format

Share Document