Modal Analysis and Experimental Analysis of Dynamic Characteristics of Linear Rolling Guide

2012 ◽  
Vol 482-484 ◽  
pp. 2360-2364
Author(s):  
Xiao Peng Li ◽  
Hao Guo ◽  
Jing Nian Liu ◽  
Ya Li Liu

The finite element model of the liner rolling guide of the CNC machine tool is established. Then the natural frequencies and the corresponding vibration modes of the liner rolling guide (LRG) are obtained by analyzing the finite element model (FEM) of the linear rolling guide in two different boundary conditions. By comparing the modal characters of the two states it is proved that the movable joint and bolted interfaces of the rail have certain effects on the dynamic performance of linear rolling guide. Besides, the liner rolling guide also have been tested dynamically, obtaining the modal parameters of the rail guide; finally, the validity of finite element model and the effect of boundary conditions on the interface of the linear rolling guide are verified by comparing the finite element analysis of frequency and experimental analysis of frequency

2014 ◽  
Vol 945-949 ◽  
pp. 1143-1149
Author(s):  
Hai Xia Sun ◽  
Hua Kai Wei ◽  
Xiao Fang Zhao ◽  
Jia Rui Qi

The finite element model of the concrete mixing truck’s frame is builded by using shell as basic element, and the process of building the finite element model of the balance suspension is introduced in detail. Based on this, frame’s stress on five types of typical operating conditions are calculated by using the finite element analysis software, NASTRAN, and results can show the dangerous position and the maximum stress position on the frame. The analysis result on structural strength can provide the basis for further improving the frame structure.


Author(s):  
Budy Notohardjono ◽  
Shawn Canfield ◽  
Suraush Khambati ◽  
Richard Ecker

Shorter development design schedules and increasingly dense product designs create difficult challenges in predicting structural performance of a mainframe computer’s structure. To meet certain certification benchmarks such as the Telcordia Technologies Generic Requirements GR-63-CORE seismic zone 4 test profile, a physical test is conducted. This test will occur at an external location at the end of design cycle on a fully functional and loaded mainframe system. The ability to accurately predict the structural performance of a mainframe computer early in the design cycle is critical in shortening its development time. This paper discusses an improved method to verify the finite element analysis results predicting the performance of the mainframe computer’s structure long before the physical test is conducted. Sine sweep and random vibration tests were conducted on the frame structure but due to a limitation of the in-house test capability, only a lightly loaded structure can be tested. Evaluating a structure’s modal stiffness is key to achieving good correlation between a finite element (FE) model and the physical system. This is typically achieved by running an implicit modal analysis in a finite element solver and comparing it to the peak frequencies obtained during physical testing using a sine sweep input. However, a linear, implicit analysis has its limitations. Namely, the inability to assess the internal, nonlinear contact between parts. Thus, a linear implicit analysis may be a good approximation for a single body but not accurate when examining an assembly of bodies where the interaction (nonlinear contact) between the bodies is of significance. In the case of a nonlinear assembly of bodies, one cannot effectively correlate between the test and a linear, implicit finite element model. This paper explores a nonlinear, explicit analysis method of evaluating a structure’s modal stiffness by subjecting the finite element model to a vibration waveform and thereafter post processing its resultant acceleration using Fast Fourier Transformation (FFT) to derive the peak frequencies. This result, which takes into account the nonlinear internal contact between the various parts of the assembly, is in line with the way physical test values are obtained. This is an improved method of verification for comparing sine sweep test data and finite element analysis results. The final verification of the finite element model will be a successful physical seismic test. The tests involve extensive sequential, uniaxial earthquake testing in both raised floor and non-raised floor environments in all three directions. Time domain acceleration at the top of the frame structure will be recorded and compared to the finite element model. Matching the frequency content of these accelerations will be proof of the accuracy of the finite element model. Comparative analysis of the physical test and the modeling results will be used to refine the mainframe’s structural elements for improved dynamic response in the final physical certification test.


2011 ◽  
Vol 201-203 ◽  
pp. 253-256 ◽  
Author(s):  
Zhi Peng Lv ◽  
Si Zhu Zhou ◽  
Xiu Hua Ma

According to the plunger pump movement principle, this paper analyzed the two kind of typical force situation of the crosshead, and obtained the theoretical maximum force. Established the finite element model of the crosshead, gave an analysis to the load handling and boundary condition. The last results of the node stress and displacement show that the crosshead can work safely.


1996 ◽  
Vol 118 (3) ◽  
pp. 474-478 ◽  
Author(s):  
Wang Fengquan ◽  
Chen Shiyu

In this paper, a method used to determine the boundary conditions of the Finite Element Model of a slender beam with measured structure modal parameters is presented. On deriving the method, the finite element model theory for dynamic calculating is used. Combined with the modal parameters from experiment, an FEM-modal parameter equation to determine the boundary conditions is put forward. For solving the equation, three methods are given. The first is the accurate method. The second is the full mode computation method by means of generalized inverse matrix. The third is the interpolation method of frequency. A numerical simulation with computer is given and the results of calculation fully verify the effectiveness of the method offered and also verify that the accuracy of the method is satisfying. Finally, an applied example is given and the results of calculation fully verify the effectiveness of the method offered.


Author(s):  
Kenneth P. Vandevoordt ◽  
Michael Feng

Electronic modules for a guidance system are mounted in a rack with spring clips resisting motion normal to the printed wiring board (PWB) and an aluminum bar with an elastomer pad keeping the module connected to a backplane. The elastomer pad also resists motion normal to the board. The proper boundary conditions for the spring clips, retention bar, and connector are needed in a finite element model in order to evaluate the shock and vibration transmitted to the module’s electrical components. The finite element model of the module was assembled, and an actual module was tested under random vibration and a 1g sine sweep. The printed wiring board elastic modulus was artificially set higher in the FEM than a measured value to account for the stiffening effect of board components which were omitted from the model. By also choosing the proper boundary conditions to represent the spring clips, retention bars, and backplane connection, the finite element model was able to match the first and second mode frequencies from the hardware test results.


2013 ◽  
Vol 694-697 ◽  
pp. 194-197
Author(s):  
Li Juan Yu ◽  
Chang Ju Xu ◽  
Xue Cheng Zhang

In the test enginery, using reverse frame put the pulling force into the pressure is the most commonly structure method. This paper analyzed the buckling problem of the process of reverse frame working, established the finite element model , stability analyzed , putted forward and proved the critical condition of reverse frame in the course of stability, Verified in 10kN deadweight force standard machine.


Author(s):  
A. Bahtui ◽  
H. Bahai ◽  
G. Alfano

This paper presents a detailed finite element analysis of a five-layer unbonded flexible riser. The numerical results are compared analytical solutions for various load cases. In the finite element model all layers are modelled separately with contact interfaces placed between each layer. The finite element model includes the main features of the riser geometry with very little simplifying assumptions made. The numerical model was solved using a fully explicit time-integration scheme implemented in a parallel environment on a 16-processor cluster. The very good agreement found from numerical and analytical comparisons validates the use of our numerical model to provide benchmark solutions against which further detailed investigation will be made.


Energies ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 1015 ◽  
Author(s):  
Yinping Li ◽  
Tianxu Jin ◽  
Li Liu ◽  
Kun Yuan

The pantograph catenary system plays an important role in the power performance of electric mining vehicles. A pantograph catenary system combining both a pantograph and a catenary is one of the most promising solutions. As a case study, this paper discusses the dynamic performance and the stable current collection of a pantograph catenary system for a 14 ton underground overhead wire electrical actuated load, haul, dump machine (LHD). First, based on the optimized finite element simulation process, finite element models of the pantograph system and the catenary system are established. Second, the motion equation of the catenary is improved, and the finite element model of the pantograph catenary system is established. Finally, a dynamic simulation experiment is performed to determine the dynamic performance of the pantograph catenary system. The results show that when the radius of the contact wire is set to 0.00564 m and the tension of contact wire is set to 30 KN, the current collection indexes of the pantograph catenary system meet the requirements of stable current collection and are superior to the simulation results of related references. Therefore, the validity of the finite element model is verified; thus, the pantograph catenary system can stably charge and supply energy for the trolley wire overhead electrically actuated LHD and ensure sufficient power.


2020 ◽  
Vol 10 (03) ◽  
pp. 2050007
Author(s):  
Do Thanh Binh ◽  
V. A. Chebanenko ◽  
Le Van Duong ◽  
E. Kirillova ◽  
Pham Manh Thang ◽  
...  

Based on the variational principle, equations and boundary conditions for transverse steady vibrations of a bimorph consisting of a piezoelectric and piezomagnetic layers are obtained. The results of calculations of natural frequencies are compared with the finite element model of the device in ACELAN.


Author(s):  
Budy Notohardjono ◽  
Richard Ecker ◽  
Shawn Canfield

A mainframe computer’s structure consists of a frame or rack, drawers with central processor units, IO equipment, memory and other electronic equipment. The focus of this structural mechanical analysis and design is on the frame, earthquake stiffening brackets and tie-down methods. The primary function of the frame is to protect critical electronic equipment in two modes. The first mode is during shipping shock and vibration, which provides excitation primarily in the vertical direction. The second mode of protection is protecting the equipment during seismic events where horizontal vibration can be significant. Frame stiffening brackets and tie-downs are features added to mainframe systems that must meet earthquake resistance requirements. Designing to withstand seismic events requires significant analysis and test efforts since the functional performance of the system must be maintained during and after seismic events. The frame stiffening brackets and anchorage system must have adequate strength and stiffness to counteract earthquake-induced forces, thereby preventing human injury and potential system damage. The frame’s stiffening bracket and tie-down combination must ensure continued system operation by limiting overall displacement of the structure to acceptable levels, while not inducing undue stress to the critical electronic components. This paper discusses the process of finite element analysis and testing of a mainframe computer structure to develop a design that can withstand a severe earthquake test profile. Finite element analysis modeling tools such as ANSYS, a general-purpose finite element solver, was used to analyze the initial frame design CAD model. Both implicit and explicit finite element methods were used to analyze the mainframe subjected to uniaxial and triaxial earthquake test profiles. The seismic simulation tests involve extensive uniaxial and triaxial earthquake testing in both raised floor and non-raised floor environments at a test facility. Prior to this extensive final test, in-house tests were conducted along with modal analysis of the prototype frame hardware. These tests are used to refine the dynamic characteristics of the finite element model and to design the frame stiffening bracket and tie-down system. The purpose of the modeling and in-house testing is to have a verified finite element model of the server frame and components, which will then lead to successful, seismic system tests. During experimental verification, the dynamic responses were recorded and analyzed in both the time and frequency domains. The use of explicit finite element modeling, specifically LS-DYNA, extends the capability of implicit, linear modeling by allowing the incorporation of test data time history input and the experimentally derived damping ratio. When combined with the ability to model non-linear connections and material properties, this method provides better correlation to measured test results. In practice, the triaxial seismic time history was applied as input to the finite element model, which predicted regions of plastic strain and deformation. These results were used to iteratively simulate enhancements and successfully reduce structural failure in subsequent testing.


Sign in / Sign up

Export Citation Format

Share Document