Dynamic Analysis of DVG 850 High-Speed Machining Center

2012 ◽  
Vol 487 ◽  
pp. 203-207
Author(s):  
Gong Xue Zhang ◽  
Xiao Kai Shen

Purpose, with the application of workbench finite element analysis software, get the analysis results of DVG 850 high-speed vertical machining center via the modal analysis and harmonic response analysis. Use the calculation results for reference, put forward the improved method, and prove the credibility of the simulation analysis by testing DVG 850 prototype.

2013 ◽  
Vol 300-301 ◽  
pp. 974-977
Author(s):  
Xi Hou ◽  
Hui Zhang ◽  
Sheng Ze Wang

A finite beam element model of the spindle which is one of key parts of the high-speed winder is presented in this paper. Critical speeds of the spindle based on the finite beam element model are obtained considering the effect of rotatory inertia, gyroscopic moments, and the damping. Harmonic response analysis of the high-speed winder spindle is developed in two conditions including static unbalance and couple unbalance. The dynamic analysis mentioned above is implemented by using the finite element software ANSYS. Calculation results in this paper are helpful for the dynamic balance of the high-speed winder spindle.


2012 ◽  
Vol 201-202 ◽  
pp. 907-911 ◽  
Author(s):  
Feng Yi Feng ◽  
Yu Guo Cui ◽  
Fei Xue ◽  
Liang En Wu

Based on the requirements of that the finger can move in parallel, and the displacement of the finger can be detected, the micro-gripper driven by piezoelectric actuator is designed based on the displacement amplification structure with the flexure hinge. The static analysis, the modal analysis, the harmonic response analysis and the transient response analysis of the micro-gripper are carried out by using the finite element analysis software ANSYS. The results of the finite element analysis show that the finger is fully able to move in parallel, and can detect the displacement of the finger; the maximum displacement of the finger is about 101 μm, the first natural frequency is about 130 Hz; the finger tip displacement under the 1 μm step input is about 20 μm, the fingertip vibration is about ±2 μm.


2015 ◽  
Vol 741 ◽  
pp. 15-18
Author(s):  
Le Ping Liu ◽  
Yu An Peng ◽  
Ya Jun Yan ◽  
Qun Qun Gao

Considering its important influence on ultrasonic burnishing, ultrasonic horn is the research object in this paper. Take theoretical design of it firstly, then build 3d model by ANSYS11.0 and carry out modal analysis and harmonic response analysis of it. The results show that the longitudinal vibration frequency and the amplitude of transducer are similar to the design value. This validates the feasibility of the design and provides a certain experimental basis for the application of horn in ultrasonic rolling process.


2010 ◽  
Vol 97-101 ◽  
pp. 3671-3676
Author(s):  
Li Zhang ◽  
Liang Wei Zhong

Modal analysis of machine center was carried out by means of finite-element analysis (FEA) method to get its characteristics and to improve its machining precision. Based on this, harmonic response analysis was processed to evaluate its vibration when the cycle load caused by the machining force was applied on the main shaft of machine center, which was used to provide clues for avoiding resonance vibration and ameliorating design.


2012 ◽  
Vol 605-607 ◽  
pp. 1519-1522
Author(s):  
Lei Sun ◽  
Xia Wang

The modal analysis and harmonic response analysis of milling head box were done by means of finite element method. Find out its characteristics of vibration modal. The analysis is conducive to the design of the milling head box of machine tool. It makes a base for optimized design and remanufacturing.


2013 ◽  
Vol 712-715 ◽  
pp. 1487-1493
Author(s):  
Xin Yuan He ◽  
Ye Tian ◽  
Hong Wei Zhao ◽  
Cheng Li Shi ◽  
Pi Xin Liu

Machine working environment was simulated by using ANSYS software for analysis and calculation. Modal analysis results indicated that machine tools didn't produce resonance during the machine working. Harmonic response analysis result shew the displacement response frequency was 42Hz along the Y, Z two directions on the bottom of ram, and X direction's response frequency was 43 Hz. The conclusion given by this paper has guiding significance to use the machine safely in the future.


2011 ◽  
Vol 141 ◽  
pp. 134-138
Author(s):  
Chuan Guang Ding ◽  
Fang Zhen Song ◽  
Bo Song ◽  
Xiu Hua Men

The large-scale and modular design of vibrating screen brings about the trend that the screen separate from screen frame. The separation of the screen frame and the screen changes their dynamic characteristics. By making modal analysis and harmonic response analysis in ANSYS, the dynamic data of the screen and the screen frame was obtained, such as the natural frequencies, mode shapes, stress distribution and strain distribution. The results show that the stiffness of screen frame is higher than stiffness of the screen and the side plats and beams of screen are the weak parts.


2019 ◽  
Vol 118 ◽  
pp. 02043
Author(s):  
Yan Chen ◽  
Chunyan Ma ◽  
Zaihe Shen ◽  
Rui Chen

In the design and application of ultrasonic atomizer, the resonant frequency and vibration mode of piezoelectric transducer have an effect on the working state and atomization effect of the atomizer. In order to deeply study the piezoelectric ceramic ultrasonic atomizer Vibration characteristics, piezoelectric coupling simulation analysis was performed by ANSYS software, multi-order vibration mode of piezoelectric ceramic atomization sheet obtained by modal analysis method, combined with harmonic response analysis to obtain resonant frequency of piezoelectric ceramic ultrasonic atomization sheet, and analysis the influence of the main size of the atomized sheet on the vibration mode. According to theoretical analysis and experimental tests, the effectiveness of the finite element analysis can be verified, and then provide a theoretical basis for the study of ultrasonic atomizers.


2011 ◽  
Vol 337 ◽  
pp. 713-716
Author(s):  
Lei Sun ◽  
Ming Hai Wang ◽  
Xiao Peng Li ◽  
Yue Sun

Taking machine tool bed as example,the modal analysis and harmonic response analysis were done by means of finite element method. Find out its characteristics of vibration modal. The analysis is conducive to the design of the machine tool bed. It makes a base for optimized design and remanufacturing.


Sign in / Sign up

Export Citation Format

Share Document