Observer-Based State Tracking Adaptive Controller for a Class of Non-Affine Nonlinear Systems: An Intelligent Approach

2012 ◽  
Vol 488-489 ◽  
pp. 1798-1802
Author(s):  
R. Ghasemi ◽  
M.B. Menhaj ◽  
B. Abdi

This paper proposes a new method for designing both nonlinear observer and adaptive controller for a class of non-affine nonlinear systems with unknown functions of the system. The states of the nonlinear system are assumed to be unavailable for measurement. The merits of this paper is as: asymptotic convergence of the observer and tracking error to zero, boundedness of all signals involved, and robustness. The simulation results illustrate the promising performance of the proposed algorithm.

2019 ◽  
Vol 141 (11) ◽  
Author(s):  
Ashish Kumar Jain ◽  
Shubhendu Bhasin

This paper proposes a robust compensator for a class of uncertain nonlinear systems subjected to unknown time-varying input delay. The proposed control law is based on the integral of past values of control and a novel filtered tracking error. Sufficient gain conditions dependent on the known bound of the delay are derived using a Lyapunov-based stability analysis, where Lyapunov–Krasovskii (LK) functionals are used to achieve a global uniformly ultimately bounded (GUUB) tracking result. Simulation results for a nonlinear system are used to evaluate the performance and robustness of the controller for different values of time-varying input delay.


Author(s):  
A. Ghafoor ◽  
J. Yao ◽  
S. N. Balakrishnan ◽  
J. Sarangapani ◽  
T. Yucelen

In this paper, a novel event triggered neural network (NN) adaptive controller is presented for uncertain affine nonlinear systems. Controller design is based on an observer, called as Modified State Observer (MSO), which is used to approximate uncertainties online. State is sensed continuously yet sent on feedback network only when required, in aperiodic fashion. Lyapunov analysis is used to derive this condition which is dynamic in nature since it is based on tracking error. In this way ETNAC helps to not only saves communication cost but also computational efforts. MSO formulations have two tunable gains which let you do fast estimation without inducing high frequency oscillations in the system. A benchmark example of 2-link robotic manipulator is used to show the efficacy of the proposed controller.


2011 ◽  
Vol 48-49 ◽  
pp. 17-20
Author(s):  
Chun Li Xie ◽  
Tao Zhang ◽  
Dan Dan Zhao ◽  
Cheng Shao

A design method of LS-SVM based stable adaptive controller is proposed for a class of nonlinear continuous systems with unknown nonlinear function in this paper. Due to the fact that the control law is derived based on the Lyapunov stability theory, the scheme can not only solve the tracking problem of this class of nonlinear systems, but also it can guarantee the asymptotic stability of the closed systems, which is superior to many LS-SVM based control schemes. The effectiveness of the proposed scheme is demonstrated by simulation results.


Symmetry ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 854
Author(s):  
Raquel S. Rodríguez ◽  
Gilberto Gonzalez Avalos ◽  
Noe Barrera Gallegos ◽  
Gerardo Ayala-Jaimes ◽  
Aaron Padilla Garcia

An alternative method to analyze a class of nonlinear systems in a bond graph approach is proposed. It is well known that the analysis and synthesis of nonlinear systems is not a simple task. Hence, a first step can be to linearize this nonlinear system on an operation point. A methodology to obtain linearization for consecutive points along a trajectory in the physical domain is proposed. This type of linearization determines a group of linearized systems, which is an approximation close enough to original nonlinear dynamic and in this paper is called dynamic linearization. Dynamic linearization through a lemma and a procedure is established. Therefore, linearized bond graph models can be considered symmetric with respect to nonlinear system models. The proposed methodology is applied to a DC motor as a case study. In order to show the effectiveness of the dynamic linearization, simulation results are shown.


Author(s):  
Fujin Jia ◽  
Junwei Lu ◽  
Yong-Min Li ◽  
Fangyuan Li

In this paper, the global finite-time stabilization (FTS) of nonlinear systems with unknown functions (UFs) is studied. Firstly, in order to deal with UFs, a Lemma is proposed to avoid the Assumptions of UFs. Secondly, based on this Lemma, the control algorithm designed by using backstepping has no partial derivative of virtual controllers, so it avoids the “differential explosion” problem of backstepping. Thirdly, by using Lyapunov analysis method, backstepping and FTS method, a global FTS control algorithm of nonlinear systems with UFs is proposed. Finally, the feasibility of developed control approach is illustrated by the simulation results of a manipulator.


Author(s):  
Raheleh Jafari ◽  
Sina Razvarz ◽  
Alexander Gegov ◽  
Satyam Paul

In order to model the fuzzy nonlinear systems, fuzzy equations with Z-number coefficients are used in this chapter. The modeling of fuzzy nonlinear systems is to obtain the Z-number coefficients of fuzzy equations. In this work, the neural network approach is used for finding the coefficients of fuzzy equations. Some examples with applications in mechanics are given. The simulation results demonstrate that the proposed neural network is effective for obtaining the Z-number coefficients of fuzzy equations.


2014 ◽  
Vol 2014 ◽  
pp. 1-10
Author(s):  
Huanqing Wang ◽  
Xiaoping Liu ◽  
Qi Zhou ◽  
Hamid Reza Karimi

The problem of fuzzy-based direct adaptive tracking control is considered for a class of pure-feedback stochastic nonlinear systems. During the controller design, fuzzy logic systems are used to approximate the packaged unknown nonlinearities, and then a novel direct adaptive controller is constructed via backstepping technique. It is shown that the proposed controller guarantees that all the signals in the closed-loop system are bounded in probability and the tracking error eventually converges to a small neighborhood around the origin in the sense of mean quartic value. The main advantages lie in that the proposed controller structure is simpler and only one adaptive parameter needs to be updated online. Simulation results are used to illustrate the effectiveness of the proposed approach.


Author(s):  
Mansour Karkoub ◽  
Tzu Sung Wu

In this paper, the design problem of delayed output feedback control scheme using two-layer interval fuzzy observers for a class of nonlinear systems with state and output delays is investigated. The Takagi-Sugeno type fuzzy linear model with an on-line update law is used to approximate the nonlinear system. Based on the fuzzy model, a two-layer interval fuzzy observer is used to reconstruct the system states according to equal interval output time delay slices. Subsequently, a delayed output feedback adaptive fuzzy controller is developed to override the nonlinearities, time delays, and external disturbances such that the H∞ tracking performance is achieved. The linguistic information is developped by setting the membership functions of the fuzzy logic system and the adaptation parameters to estimate the model uncertainties directly for using linear analytical results instead of estimating nonlinear system functions. The filtered tracking error dynamics are designed to satisfy the Strictly Positive Realness (SPR) condition. Based on the Lyapunov stability criterion and linear matrix inequalities (LMIs), some sufficient conditions are derived so that all states of the system are uniformly ultimately bounded and the effect of the external disturbances on the tracking error can be attenuated to any prescribed level and consequently an H∞ tracking control is achieved. Finally, a numerical example of a two-link robot manipulator is given to illustrate the effectiveness of the proposed control scheme.


2015 ◽  
Vol 2015 ◽  
pp. 1-6
Author(s):  
Xiafu Peng ◽  
Lixiong Lin ◽  
Xunyu Zhong ◽  
Chengrui Liu

The fault diagnosability analysis for a given model, before developing a diagnosis algorithm, can be used to answer questions like “can the faultfibe detected by observed states?” and “can it separate faultfifrom faultfjby observed states?” If not, we should redesign the sensor placement. This paper deals with the problem of the evaluation of detectability and separability for the diagnosability analysis of affine nonlinear system. First, we used differential geometry theory to analyze the nonlinear system and proposed new detectability criterion and separability criterion. Second, the related matrix between the faults and outputs of the system and the fault separable matrix are designed for quantitative fault diagnosability calculation and fault separability calculation, respectively. Finally, we illustrate our approach to exemplify how to analyze diagnosability by a certain nonlinear system example, and the experiment results indicate the effectiveness of the fault evaluation methods.


Author(s):  
Fouad Allouani ◽  
Djamel Boukhetala ◽  
Fares Boudjema ◽  
Gao Xiao-Zhi

Purpose – The two main purposes of this paper are: first, the development of a new optimization algorithm called GHSACO by incorporating the global-best harmony search (GHS) which is a stochastic optimization algorithm recently developed, with the ant colony optimization (ACO) algorithm. Second, design of a new indirect adaptive recurrent fuzzy-neural controller (IARFNNC) for uncertain nonlinear systems using the developed optimization method (GHSACO) and the concept of the supervisory controller. Design/methodology/approach – The novel optimization method introduces a novel improvization process, which is different from that of the GHS in the following aspects: a modified harmony memory representation and conception. The use of a global random switching mechanism to monitor the choice between the ACO and GHS. An additional memory consideration selection rule using the ACO random proportional transition rule with a pheromone trail update mechanism. The developed optimization method is applied for parametric optimization of all recurrent fuzzy neural networks adaptive controller parameters. In addition, in order to guarantee that the system states are confined to the safe region, a supervisory controller is incorporated into the IARFNNC global structure. Findings – First, to analyze the performance of GHSACO method and shows its effectiveness, some benchmark functions with different dimensions are used. Simulation results demonstrate that it can find significantly better solutions when compared with the Harmony Search (HS), GHS, improved HS (IHS) and conventional ACO algorithm. In addition, simulation results obtained using an example of nonlinear system shows clearly the feasibility and the applicability of the proposed control method and the superiority of the GHSACO method compared to the HS, its variants, particle swarm optimization, and genetic algorithms applied to the same problem. Originality/value – The proposed new GHS algorithm is more efficient than the original HS method and its most known variants IHS and GHS. The proposed control method is applicable to any uncertain nonlinear system belongs in the class of systems treated in this paper.


Sign in / Sign up

Export Citation Format

Share Document