Backstepping Sliding Mode Control for Rocket Launcher Alternating Current Servo System

2012 ◽  
Vol 490-495 ◽  
pp. 1387-1391 ◽  
Author(s):  
Fu Hong Chen ◽  
Da Wei Ma ◽  
Fan Yang

Aiming at wide variations in loads and moment of inertia, large disturbed moment of a rocket launcher position servo system, a backstepping sliding mode control method was present. The proposed method combines the backstepping control with the classical sliding mode control in order to limit the matched disturbances and the unmatched disturbances , which are caused by the gas flow impact and the moment of inertia disturbance respectively. The simulation results show that the proposed approach can guarantee accuracy and increase the response speed and possesses a strong robustness to the matched disturbances and the unmatched disturbances.

Actuators ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 154
Author(s):  
Bin Wang ◽  
Pengda Ren ◽  
Xinhao Huang

A piston piezoelectric (PZT) pump has many advantages for the use of light actuators. How to deal with the contradiction between the intermittent oil supplying and position control precision is essential when designing the controller. In order to accurately control the output of the actuator, a backstepping sliding-mode control method based on the Lyapunov function is introduced, and the controller is designed on the basis of establishing the mathematical model of the system. The simulation results show that, compared with fuzzy PID and ordinary sliding-mode control, backstepping sliding-mode control has a stronger anti-jamming ability and tracking performance, and improves the control accuracy and stability of the piezoelectric pump-controlled actuator system.


2011 ◽  
Vol 317-319 ◽  
pp. 1490-1494 ◽  
Author(s):  
Bao Quan Jin ◽  
Yan Kun Wang ◽  
Ya Li Ma

The parameters uncertainty and external disturbance play a negative role to improve electro-hydraulic position servo system performance. The valve controlled cylinder system model is established, using the traditional PID control strategy and reaching law control strategy for simulating the system, respectively, the two methods have similar control effects in the ideal model, but considering the external disturbances, the index approaches sliding mode control law has better response speed and stability. Research shown that sliding mode control algorithm has an important role for improving the performance of hydraulic servo position control system.


Author(s):  
Chunbo Xiu ◽  
Fengnan Liu ◽  
Guowei Xu

In order to improve the versatility of the control method of the four-rotor aircraft, a general mathematical model, the rectangular four-rotor aircraft, is modeled, and two special cases, square cross structure and square X structure, are deduced. Based on the conventional global sliding mode control, an improved global sliding mode control is proposed to control the position and the attitude of the four-rotor aircraft. The dynamic sliding mode surface of the improved global sliding mode control can evolve into the linear sliding mode surface in a limited time by changing the decay function of the dynamic sliding mode surface. In this way, the controlled system has not only the strong global robustness but also the quick response rate. Simulation results show that the position and the attitude of the four-rotor aircraft can be controlled by the improved global sliding mode control, and the control performances, for instance the response speed, can be improved.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Rui Bai ◽  
Shaocheng Tong

In modern automobiles, electronic throttle is a DC-motor-driven valve that regulates air inflow into the vehicle’s combustion system. The electronic throttle is increasingly being used in order to improve the vehicle drivability, fuel economy, and emissions. Electronic throttle system has the nonlinear dynamical characteristics with the unknown disturbance and parameters. At first, the dynamical nonlinear model of the electronic throttle is built in this paper. Based on the model and using the backstepping design technique, a new adaptive backstepping sliding-mode controller of the electronic throttle is developed. During the backstepping design process, parameter adaptive law is designed to estimate the unknown parameter, and sliding-mode control term is applied to compensate the unknown disturbance. The proposed controller can make the actual angle of the electronic throttle track its set point with the satisfactory performance. Finally, a computer simulation is performed, and simulation results verify that the proposed control method can achieve favorable tracking performance.


Sign in / Sign up

Export Citation Format

Share Document