Study on Ship Motion under Internal Sloshing Impacts

2012 ◽  
Vol 490-495 ◽  
pp. 2853-2857
Author(s):  
Zhuo Bin Wei ◽  
Xian Wei Xiong ◽  
Ning Zhang

The purpose of this paper was to investigate the internal liquid sloshing and its effects on the ship motion. A mechanical model of ship motion under sloshing impacts is described. The lateral sloshing forces are included in the model. The nonlinear dynamical system is introduced to describe the sway motion of the ship. The results of the numerical simulation and the effects of the internal sloshing loads are analyzed. The feasibility of the approach is thus verified.

2020 ◽  
Vol 22 (4) ◽  
pp. 983-990
Author(s):  
Konrad Mnich

AbstractIn this work we analyze the behavior of a nonlinear dynamical system using a probabilistic approach. We focus on the coexistence of solutions and we check how the changes in the parameters of excitation influence the dynamics of the system. For the demonstration we use the Duffing oscillator with the tuned mass absorber. We mention the numerous attractors present in such a system and describe how they were found with the method based on the basin stability concept.


2006 ◽  
Vol 06 (01) ◽  
pp. L7-L15
Author(s):  
ALEXANDROS LEONTITSIS

The paper introduces a method for estimation and reduction of calendar effects from time series, which their fluctuations are governed by a nonlinear dynamical system and additive normal noise. Calendar effects can be considered deviations of the distribution(s) of particular group(s) of observations that have a common characteristic related to the calendar. The concept of this method is the following: since the calendar effects are not related to the dynamics of the time series, the accurate estimation and reduction will result a time series with a smaller amount of noise level (i.e. more accurate dynamics). The main tool of this method is the correlation integral, due to its inherit capability of modeling both the dynamics and the additive normal noise. Experimental results are presented on the Nasdaq Cmp. index.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Takeshi Kojima ◽  
Tetsushi Ueta ◽  
Tetsuya Yoshinaga

Multivalued discrete tomography involves reconstructing images composed of three or more gray levels from projections. We propose a method based on the continuous-time optimization approach with a nonlinear dynamical system that effectively utilizes competition dynamics to solve the problem of multivalued discrete tomography. We perform theoretical analysis to understand how the system obtains the desired multivalued reconstructed image. Numerical experiments illustrate that the proposed method also works well when the number of pixels is comparatively high even if the exact labels are unknown.


Sign in / Sign up

Export Citation Format

Share Document