A New Coordinate Control Method for Electric Motor Regenerative Braking and ABS Coordinate

2012 ◽  
Vol 490-495 ◽  
pp. 3-6
Author(s):  
Ren Guang Wang ◽  
Guang Kui Shi ◽  
Hong Tao Chen ◽  
Lin Tao Zhang ◽  
Chao Yu

In pure electric vehicle and hybrid electric vehicle, the adoption of motor barking for energy recycling make its braking control more complicated. Making good use of braking energy can improve vehicle efficiency. A new method was developed to coordinate the motor regenerative braking and ABS braking. Which identify the road condition with real time basing on wheel speed information from four wheel speed sensors. Then control system decides the braking force provided by ABS system. The residual braking force is produced by motor barking to meet total braking force requirements. The two braking forces are coordinated by control system to perform brake function of vehicle.

Author(s):  
C Jo ◽  
J Ko ◽  
H Yeo ◽  
T Yeo ◽  
S Hwang ◽  
...  

A cooperative regenerative braking control algorithm is proposed for a six-speed automatic-transmission-based parallel hybrid electric vehicle (HEV) during a downshift that satisfies the requirements for braking force and driving comfort. First, a downshift strategy during braking is suggested by considering the re-acceleration performance. To maintain driving comfort, a cooperative regenerative braking control algorithm is developed that considers the response characteristics of the electrohydraulic brake. Using the electrohydraulic brake’s hardware and an HEV simulator, a hardware-in-the-loop simulation (HILS) is performed. From the HILS results, it is found that the proposed cooperative regenerative braking control algorithm satisfies the demanded braking force and driving comfort during the downshift with regenerative braking.


2019 ◽  
Vol 103 (1) ◽  
pp. 003685041987776 ◽  
Author(s):  
Shengqin Li ◽  
Bo Yu ◽  
Xinyuan Feng

Electric vehicles can convert the kinetic energy of the vehicle into electric energy for recycling. A reasonable braking force distribution strategy is the key to ensure braking stability and the energy recovery rate. For an electric vehicle, based on the ECE regulation curve and ideal braking force distribution (I curve), the braking force distribution strategy of the front and rear axles is designed to study the braking energy recovery control strategy. The fuzzy control method is adopted while the charging power limit of the battery is considered to correct the regenerative braking torque of the motor, the ratio of the regenerative braking force of the motor to the front axle braking force is designed according to different braking strengths, then the braking force distribution and braking energy recovery control strategies for regenerative braking and friction braking are developed. The simulation model of combined vehicle and energy recovery control strategy is established by Simulink and Cruise software. The braking energy recovery control strategy of this article is verified under different braking conditions and New European Driving Cycle conditions. The results show that the control strategy proposed in this article meets the requirements of braking stability. Under the condition of initial state of charge of 75%, the variation of state of charge of braking control strategy in this article is reduced by 8.22%, and the state of charge of braking strategy based on I curve reduces by 9.12%. The braking force distribution curves of the front and rear axle are in line with the braking characteristics, can effectively recover the braking energy, and improve the battery state of charge. Taking the using range of 95%–5% of battery state of charge as calculation target, the cruising range of vehicle with braking control strategy of this article increases to 136.64 km, which showed that the braking control strategy in this article could increase the cruising range of the electric vehicle.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Guodong Yin ◽  
XianJian Jin

A new cooperative braking control strategy (CBCS) is proposed for a parallel hybrid electric vehicle (HEV) with both a regenerative braking system and an antilock braking system (ABS) to achieve improved braking performance and energy regeneration. The braking system of the vehicle is based on a new method of HEV braking torque distribution that makes the antilock braking system work together with the regenerative braking system harmoniously. In the cooperative braking control strategy, a sliding mode controller (SMC) for ABS is designed to maintain the wheel slip within an optimal range by adjusting the hydraulic braking torque continuously; to reduce the chattering in SMC, a boundary-layer method with moderate tuning of a saturation function is also investigated; based on the wheel slip ratio, battery state of charge (SOC), and the motor speed, a fuzzy logic control strategy (FLC) is applied to adjust the regenerative braking torque dynamically. In order to evaluate the performance of the cooperative braking control strategy, the braking system model of a hybrid electric vehicle is built in MATLAB/SIMULINK. It is found from the simulation that the cooperative braking control strategy suggested in this paper provides satisfactory braking performance, passenger comfort, and high regenerative efficiency.


2014 ◽  
Vol 602-605 ◽  
pp. 1122-1126
Author(s):  
Ji Gao Niu ◽  
Chun Hua Xu

In order to further improve the baking energy recovery rate of extended-range electric vehicle (E-REV), thus to extend driving distance, a high efficiency regenerative braking control strategy for E-REV was proposed. Based on the co-simulation platform with AVL-Cruise and Simulink, a dynamic model for E-REV was set up and simulation calculations on hybrid motor-mechanical regenerative braking were performed. The simulation results with typical driving cycles illustrate that the friction braking force and the regenerative braking force could be well integrated, braking energy recovery efficiency was high, and the proposed control strategy of regenerative braking in the paper is effective.


Sign in / Sign up

Export Citation Format

Share Document