Cooperative regenerative braking control algorithm for an automatic-transmission-based hybrid electric vehicle during a downshift

Author(s):  
C Jo ◽  
J Ko ◽  
H Yeo ◽  
T Yeo ◽  
S Hwang ◽  
...  

A cooperative regenerative braking control algorithm is proposed for a six-speed automatic-transmission-based parallel hybrid electric vehicle (HEV) during a downshift that satisfies the requirements for braking force and driving comfort. First, a downshift strategy during braking is suggested by considering the re-acceleration performance. To maintain driving comfort, a cooperative regenerative braking control algorithm is developed that considers the response characteristics of the electrohydraulic brake. Using the electrohydraulic brake’s hardware and an HEV simulator, a hardware-in-the-loop simulation (HILS) is performed. From the HILS results, it is found that the proposed cooperative regenerative braking control algorithm satisfies the demanded braking force and driving comfort during the downshift with regenerative braking.

2011 ◽  
Vol 228-229 ◽  
pp. 951-956 ◽  
Author(s):  
Yun Bing Yan ◽  
Fu Wu Yan ◽  
Chang Qing Du

It is necessary for Parallel Hybrid Electric Vehicle (PHEV) to distribute energy between engine and motor and to control state-switch during work. Aimed at keeping the total torque unchanging under state-switch, the dynamic torque control algorithm is put forward, which can be expressed as motor torque compensation for engine after torque pre-distribution, engine speed regulation and dynamic engine torque estimation. Taking Matlab as the platform, the vehicle control simulation model is built, based on which the fundamental control algorithm is verified by simulation testing. The results demonstrate that the dynamic control algorithm can effectively dampen torque fluctuations and ensures power transfer smoothly under various state-switches.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Guodong Yin ◽  
XianJian Jin

A new cooperative braking control strategy (CBCS) is proposed for a parallel hybrid electric vehicle (HEV) with both a regenerative braking system and an antilock braking system (ABS) to achieve improved braking performance and energy regeneration. The braking system of the vehicle is based on a new method of HEV braking torque distribution that makes the antilock braking system work together with the regenerative braking system harmoniously. In the cooperative braking control strategy, a sliding mode controller (SMC) for ABS is designed to maintain the wheel slip within an optimal range by adjusting the hydraulic braking torque continuously; to reduce the chattering in SMC, a boundary-layer method with moderate tuning of a saturation function is also investigated; based on the wheel slip ratio, battery state of charge (SOC), and the motor speed, a fuzzy logic control strategy (FLC) is applied to adjust the regenerative braking torque dynamically. In order to evaluate the performance of the cooperative braking control strategy, the braking system model of a hybrid electric vehicle is built in MATLAB/SIMULINK. It is found from the simulation that the cooperative braking control strategy suggested in this paper provides satisfactory braking performance, passenger comfort, and high regenerative efficiency.


Sign in / Sign up

Export Citation Format

Share Document