Gasify Micro-Oil Ignition Technology Based on Level Set Methods

2012 ◽  
Vol 497 ◽  
pp. 387-391
Author(s):  
Bei Wang ◽  
Yi Xie ◽  
Jian Guo Xiong

In order to improve the Micro-oil ignition and low fuel load stable combustion in the thermal power system, the standard k-ε model is used in the analysis of flow field for studying the character of the mixture of coal particles, oil and gas mixture. The trajectories of two-phase flow are simulated by the Level Set Methods (LSM). The results describe the velocity distribution of the X-axis of the two-phase flow, concentration and track of coal particles, the thermal distribution of mixed fluid in the combustion chamber. It provides a theoretical basis for the further study of Micro-oil ignition technology

Author(s):  
Angelo Alessandri ◽  
Patrizia Bagnerini ◽  
Mauro Gaggero ◽  
Luca Mantelli ◽  
Vincenzo Santamaria ◽  
...  

Author(s):  
Mamta Raju Jotkar ◽  
Daniel Rodriguez ◽  
Bruno Marins Soares

Author(s):  
Ikpe E. Aniekan ◽  
Owunna Ikechukwu ◽  
Satope Paul

Four different riser pipe exit configurations were modelled and the flow across them analysed using STAR CCM+ CFD codes. The analysis was limited to exit configurations because of the length to diameter ratio of riser pipes and the limitations of CFD codes available. Two phase flow analysis of the flow through each of the exit configurations was attempted. The various parameters required for detailed study of the flow were computed. The maximum velocity within the pipe in a two phase flow were determined to 3.42 m/s for an 8 (eight) inch riser pipe. After thorough analysis of the two phase flow regime in each of the individual exit configurations, the third and the fourth exit configurations were seen to have flow properties that ensures easy flow within the production system as well as ensure lower computational cost. Convergence (Iterations), total pressure, static pressure, velocity and pressure drop were used as criteria matrix for selecting ideal riser exit geometry, and the third exit geometry was adjudged the ideal exit geometry of all the geometries. The flow in the third riser exit configuration was modelled as a two phase flow. From the results of the two phase flow analysis, it was concluded that the third riser configuration be used in industrial applications to ensure free flow of crude oil and gas from the oil well during oil production.


2014 ◽  
Vol 100 ◽  
pp. 138-154 ◽  
Author(s):  
Lanhao Zhao ◽  
Jia Mao ◽  
Xin Bai ◽  
Xiaoqing Liu ◽  
Tongchun Li ◽  
...  

Author(s):  
Feng Xiao ◽  
Mehriar Dianat ◽  
James J. McGuirk

A robust two-phase flow LES methodology is described, validated and applied to simulate primary breakup of a liquid jet injected into an airstream in either co-flow or cross-flow configuration. A Coupled Level Set and Volume of Fluid method is implemented for accurate capture of interface dynamics. Based on the local Level Set value, fluid density and viscosity fields are treated discontinuously across the interface. In order to cope with high density ratio, an extrapolated liquid velocity field is created and used for discretisation in the vicinity of the interface. Simulations of liquid jets discharged into higher speed airstreams with non-turbulent boundary conditions reveals the presence of regular surface waves. In practical configurations, both air and liquid flows are, however, likely to be turbulent. To account for inflowing turbulent eddies on the liquid jet interface primary breakup requires a methodology for creating physically correlated unsteady LES boundary conditions, which match experimental data as far as possible. The Rescaling/Recycling Method is implemented here to generate realistic turbulent inflows. It is found that liquid rather than gaseous eddies determine the initial interface shape, and the downstream turbulent liquid jet disintegrates much more chaotically than the non-turbulent one. When appropriate turbulent inflows are specified, the liquid jet behaviour in both co-flow and cross-flow configurations is correctly predicted by the current LES methodology, demonstrating its robustness and accuracy in dealing with high liquid/gas density ratio two-phase systems.


Sign in / Sign up

Export Citation Format

Share Document