Study on Application of Energy Storage System in PV System

2012 ◽  
Vol 512-515 ◽  
pp. 995-1000
Author(s):  
Jian Lin Li ◽  
Hui Meng Ma ◽  
Zhi Jia Xie

Recently, a lot of PV power systems ranging from 1MW to 10MW have been built in China. However, the power grid can’t accept so much PV power because of their oscillated output power. PV systems are affected by the weather condition a lot, such as the sunlight and the temperature. Embedding energy storage system into PV system could improve the grid-access performance of PV systems as well as expand the functions of original PV systems, including regulating power quality of grid. In this paper, PV-storage topology is presented and the flow direction control (FDC) method is described. Based on the operation data of a 100kW PV system in a certain place of China, simulation studies are performed. The result of simulation verifies the possibility and necessity of building the energy storage system in the PV system. With the decline of the cost of energy storage system and PV system, the development of renewable energy in China will be accelerated and supported by the combination of PV system and energy storage system.

Implementation of modified AHP coupled with MOORA methods for modeling and optimization of solar photovoltaic (PV)-pumped hydro energy storage (PHS) system parameter is presented in this chapter. Work optimized the parameters, namely unmet energy (UE), size of PV-panel, and volume of upper reservoir (UR), to get economic cost of energy (COE) and excess energy (EE). The trail no.11 produces the highest assessment values compared to the other trails and provides EE as 16.19% and COE as 0.59 $/kWh for PV-PHS. ANOVA and parametric study is also performed to determine the significance of the parameters for PV-PHS performance. Investigation results indicate the effectiveness and significant potential for modeling and optimization of PV-PHS system and other solar energy systems.


2018 ◽  
Vol 10 (9) ◽  
pp. 3117 ◽  
Author(s):  
Federica Cucchiella ◽  
Idiano D’Adamo ◽  
Massimo Gastaldi ◽  
Vincenzo Stornelli

Renewable energy is a wide topic in environmental engineering and management science. Photovoltaic (PV) power has had great interest and growth in recent years. The energy produced by the PV system is intermittent and it depends on the weather conditions, presenting lower levels of production than other renewable resources (RESs). The economic feasibility of PV systems is linked typically to the share of self-consumption in a developed market and consequently, energy storage system (ESS) can be a solution to increase this share. This paper proposes an economic feasibility of residential lead-acid ESS combined with PV panels and the assumptions at which these systems become economically viable. The profitability analysis is conducted on the base of the Discounted Cash Flow (DCF) method and the index used is Net Present Value (NPV). The analysis evaluates several scenarios concerning a 3-kW plant located in a residential building in a PV developed market (Italy). It is determined by combinations of the following critical variables: levels of insolation, electricity purchase prices, electricity sales prices, investment costs of PV systems, specific tax deduction of PV systems, size of batteries, investment costs of ESS, lifetime of a battery, increases of self-consumption following the adoption of an ESS, and subsidies of ESS. Results show that the increase of the share of self-consumption is the main critical variable and consequently, the break-even point (BEP) analysis defines the case-studies in which the profitability is verified.


2012 ◽  
Vol 2012 ◽  
pp. 1-11
Author(s):  
Myo Htaik ◽  
Ryoichi Hara ◽  
Hiroyuki Kita

Most photovoltaic (PV) generation systems are connected with a utility grid and recognized as supplemental generation resources; but in some applications such as microgrid concept, a PV system works as a main resource. To improve the availability of PV systems, technological development for higher less output fluctuation in normal condition, higher fault tolerance in fault occurrence, and power demand and supply balancing in isolated condition are required. For these reasons, hybridization of a PV system and an energy storage system (ESS) would become an important technology in the future. This paper presented two kinds of circuit models, conventional “ac-connected PV-ESS,” and proposed “dc-connected PV-ESS” in which ESS is inserted at the dc-side of PV system. This paper also investigated dc-link voltage controlled by dc-dc converter of ESS in dc-connected PV-ESS and suitable control systems are also discussed normal, during fault occurrence and isolated operation.


2021 ◽  
Vol 13 (21) ◽  
pp. 12264
Author(s):  
Young Hun Lee ◽  
In Wha Jeong ◽  
Tae Hyun Sung

The purpose of this study is to conduct an economic evaluation of a photovoltaic-energy storage system (PV–ESS system) based on the power generation performance data of photovoltaic operations in Korea, and to calculate the optimal capacity of the energy storage system. In this study, PV systems in Jeju-do and Gyeongsangnam-do were targeted, PV systems in this area were assumed to be installed on a general site, and the research was conducted by applying weights based on the facility’s capacity. All the analyses were conducted using the actual amount of Korea power exchange (KPX) transactions of PV systems in 2019. In order to calculate the optimal capacity of the power conditioning system (PCS) and the battery energy storage system (BESS) according to global horizontal irradiation (GHI), PV systems with a minimum/maximum/central value were selected by comparing the solar radiation before the horizontal plane for three years (2017–2019) in the location where the PV systems was installed. As a result of the analysis, in Jeju-do, if the renewable energy certificate (REC) weight decreased to 3.4 when there was no change in the cost of installing a BESS and a PCS, it was more economical to link to the BESS than the operation of the PV system alone. In Gyeongsangnam-do, it was revealed that if the REC weight was reduced to 3.4, it was more likely to link to the BESS than the operation of the PV system alone.


2014 ◽  
Vol 1070-1072 ◽  
pp. 24-29
Author(s):  
Xiao Di Qin ◽  
Rong Rong Zhou ◽  
Lie Xia ◽  
Liang Hui Xu

Based on practical project and application, the design scheme of small capacity of integrated PV and storage grid-connected generation system is presented in this paper. For demonstrative and experimental purpose in this project, it includes several typical PV modules, tracking system and grid-connected inverters. Entire design scheme covers system integration, grid-connected solution, PV array and bracket, monitoring system, energy storage system, and etc. Configuration and application prospect of energy storage system in grid-connected PV system are mainly introduced. The characteristics of lithium battery and vanadium redox flow battery, as well as their application in the field of distributed power generation are researched.


Sign in / Sign up

Export Citation Format

Share Document