Characteristics of "Three Zones" during Underground Coal Gasification

2012 ◽  
Vol 524-527 ◽  
pp. 56-62 ◽  
Author(s):  
Hong Tao Liu ◽  
Hong Yao ◽  
Kai Yao ◽  
Feng Chen ◽  
Guang Qian Luo

According to the temperature, major chemical reactions and gas compositions, the gasification process along the tunnel of underground coal gasification is divided into three zones, i.e. oxidation zone, reduction zone and dry distillation zone. A model test in the laboratory was carried out by using large-scale coal blocks to simulate the coal seam. The characteristics of the “three zones”, and the relation between the temperature and gas composition were also quantitative studied. It provided the necessary basic knowledge for further studying the process of underground coal gasification, including predicting compositions of product gas, life-cycle analyzing, selecting optimistic control parameters and determining suitable gasification craft.

Author(s):  
Michael S. Blinderman

Underground Coal Gasification (UCG) is a gasification process carried on in non-mined coal seams using injection and production wells drilled from the surface, converting coal in situ into a product gas usable for chemical processes and power generation. The UCG process developed, refined and practiced by Ergo Exergy Technologies is called the Exergy UCG Technology or εUCG® Technology. The εUCG technology is being applied in numerous power generation and chemical projects worldwide. These include power projects in South Africa (1,200 MWe), India (750 MWe), Pakistan, and Canada, as well as chemical projects in Australia and Canada. A number of εUCG based industrial projects are now at a feasibility stage in New Zealand, USA, and Europe. An example of εUCG application is the Chinchilla Project in Australia where the technology demonstrated continuous, consistent production of commercial quantities of quality fuel gas for over 30 months. The project is currently targeting a 24,000 barrel per day synthetic diesel plant based on εUCG syngas supply. The εUCG technology has demonstrated exceptional environmental performance. The εUCG methods and techniques of environmental management are an effective tool to ensure environmental protection during an industrial application. A εUCG-IGCC power plant will generate electricity at a much lower cost than existing or proposed fossil fuel power plants. CO2 emissions of the plant can be reduced to a level 55% less than those of a supercritical coal-fired plant and 25% less than the emissions of NG CC.


Energy ◽  
2011 ◽  
Vol 36 (3) ◽  
pp. 1776-1784 ◽  
Author(s):  
Sateesh Daggupati ◽  
Ramesh N. Mandapati ◽  
Sanjay M. Mahajani ◽  
Anuradda Ganesh ◽  
R.K. Sapru ◽  
...  

Energies ◽  
2020 ◽  
Vol 13 (6) ◽  
pp. 1334 ◽  
Author(s):  
Krzysztof Kapusta ◽  
Marian Wiatowski ◽  
Krzysztof Stańczyk ◽  
Renato Zagorščak ◽  
Hywel Rhys Thomas

An experimental campaign on the methane-oriented underground coal gasification (UCG) process was carried out in a large-scale laboratory installation. Two different types of coal were used for the oxygen/steam blown experiments, i.e., “Six Feet” semi-anthracite (Wales) and “Wesoła” hard coal (Poland). Four multi-day gasification tests (96 h continuous processes) were conducted in artificially created coal seams under two distinct pressure regimes-20 and 40 bar. The experiments demonstrated that the methane yields are significantly dependent on both the properties of coal (coal rank) and the pressure regime. The average CH4 concentration for “Six Feet” semi-anthracite was 15.8%vol. at 20 bar and 19.1%vol. at 40 bar. During the gasification of “Wesoła” coal, the methane concentrations were 10.9%vol. and 14.8%vol. at 20 and 40 bar, respectively. The “Six Feet” coal gasification was characterized by much higher energy efficiency than gasification of the “Wesoła” coal and for both tested coals, the efficiency increased with gasification pressure. The maximum energy efficiency of 71.6% was obtained for “Six Feet” coal at 40 bar. A positive effect of the increase in gasification pressure on the stabilization of the quantitative parameters of UCG gas was demonstrated.


Author(s):  
Marian Wiatowski ◽  
Roksana Muzyka ◽  
Krzysztof Kapusta ◽  
Maciej Chrubasik

AbstractIn this study, the composition of tars collected during a six-day underground coal gasification (UCG) test at the experimental mine ‘Barbara’ in Poland in 2013 was examined. During the test, tar samples were taken every day from the liquid product separator and analysed by the methods used for testing properties of typical coke oven (coal) tar. The obtained results were compared with each other and with the data for coal tar. As gasification progressed, a decreasing trend in the water content and an increasing trend in the ash content were observed. The tars tested were characterized by large changes in the residue after coking and content of parts insoluble in toluene and by smaller fluctuations in the content of parts insoluble in quinoline. All tested samples were characterized by very high distillation losses, while for samples starting from the third day of gasification, a clear decrease in losses was visible. A chromatographic analysis showed that there were no major differences in composition between the tested tars and that none of the tar had a dominant component such as naphthalene in coal tar. The content of polycyclic aromatic hydrocarbons (PAHs) in UCG tars is several times lower than that in coal tar. No light monoaromatic hydrocarbons (benzene, toluene, ethylbenzene and xylenes—BTEX) were found in the analysed tars, which results from the fact that these compounds, due to their high volatility, did not separate from the process gas in the liquid product separator.


Energies ◽  
2017 ◽  
Vol 10 (2) ◽  
pp. 238 ◽  
Author(s):  
Akihiro Hamanaka ◽  
Fa-qiang Su ◽  
Ken-ichi Itakura ◽  
Kazuhiro Takahashi ◽  
Jun-ichi Kodama ◽  
...  

2008 ◽  
Vol 33 (4) ◽  
pp. 1275-1285 ◽  
Author(s):  
Lanhe Yang ◽  
Xing Zhang ◽  
Shuqin Liu ◽  
Li Yu ◽  
Weilian Zhang

Energies ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6533
Author(s):  
Magdalena Pankiewicz-Sperka ◽  
Krzysztof Kapusta ◽  
Wioleta Basa ◽  
Katarzyna Stolecka

One of the most important issues during UCG process is wastewater production and treatment. Condensed gasification wastewater is contaminated by many hazardous compounds. The composition of the generated UCG-derived wastewater may vary depending on the type of gasified coal and conditions of the gasification process. The main purpose of this study was a qualitative and quantitative characterization of the UCG wastewater produced during four different UCG experiments. Experiments were conducted using semi-anthracite and bituminous coal samples at two distinct pressures, i.e., 20 and 40 bar. The conducted studies revealed significant relationships between the physicochemical composition of the wastewater and the coal properties as well as the gasification pressure. The strongest impact is noticeable in the case of organic pollutants, especially phenols, BTEX and PAH’s. The most abundant group of pollutants were phenols. Conducted studies showed significantly higher concentration levels for bituminous coal: 29.25–49.5 mg/L whereas for semi-anthracite effluents these concentrations were in much lower range 2.1–29.7 mg/L. The opposite situation occurs for BTEX, higher concentrations were in wastewater from semi-anthracite gasification: 5483.1–1496.7 µg/L, while in samples from bituminous coal gasification average BTEX concentrations were: 2514.3–1354.4 µg/L. A similar relationship occurs for the PAH’s concentrations. The higher values were in case of wastewater from semi-anthracite coal experiments and were in range 362–1658 µg/L while from bituminous coal gasification PAH’s values are in lower ranges 407–1090 µg/L. The studies conducted have shown that concentrations of phenols, BTEX and PAH’s decrease with increasing pressure. Pearson’s correlation analysis was performed to enhance the interpretation of the obtained experimental data and showed a very strong relationship between three parameters: phenols, volatile phenols and CODcr.


1978 ◽  
Vol 18 (02) ◽  
pp. 105-116 ◽  
Author(s):  
C.B. Thorsness ◽  
R.B. Rozsa

Abstract One concept for in-situ coal gasification involves fracturing thick, deep, coal seams using chemical explosives. The resultant high-permeability zone then would be ignited and reacted with a steam/ oxygen mixture to produce medium-Btu gas suitable for upgrading to pipeline quality in a surface plant. This paper discusses the calculational modeling and supporting laboratory experiments relating to the gasification process. The primary aim of this preliminary work is to predict and correlate reaction preliminary work is to predict and correlate reaction and thermal-front propagation rates and product gas composition as a function of bed properties and process operating conditions. process operating conditions. Our initial efforts are restricted to onedimensional, transient Darcy flow in a permeable packed bed. The numerical calculations include a packed bed. The numerical calculations include a detailed description of the reacting system chemistry (13 species) with appropriate reaction rates and over-all heat and mass transport in the system. Comparison of calculated results with experimental data from a packed-bed combustion tube shows good agreement for reaction-zone propagation rates and produced-gas compositions. propagation rates and produced-gas compositions. However, the sensitivity of the calculations to other reaction-rate and transport-coefficient models should be investigated. Introduction In-situ coal gasification has received renewed interest recently. It offers four potential advantages over conventional mining and subsequent surface processing of coal: (1) the product gas may be processing of coal:the product gas may be cheaper because of lower capital investment requirements;environmental damage is likely to be lower;hazards to miners are avoided; andit may make possible the exploitation of coal resources too deeply buried for economical recovery by conventional strip or deep mining operations. The Lawrence Livermore Laboratory (LLL) packed-bed concept for coal gasification was packed-bed concept for coal gasification was originated in 1972. Major program funding by the U.S. ERDA began in 1974. The LLL concept is designed to recover medium-Btu gas from the thick, deeply buried, subbituminous coal deposits prevalent in the western U.S. After upgrading in a prevalent in the western U.S. After upgrading in a surface facility the product gas would have sufficiently high energy density to make pipeline distribution attractive economically. The packed-bed concept calls for creating a permeable zone of coal by detonating chemical permeable zone of coal by detonating chemical explosives in an array of drilled boreholes. The top of the resulting permeable zone is supplied and a steam/oxygen reactant mixture is supplied. The oxidation reactions produce a high-temperature zone that propagates through the bed as a slowmoving thermal wave. The thermal wave first dries the coal downstream from the reaction zone and then pyrolyzes (devolatilizes) it, forming a char. The char undergoes further reactions with the steam present. The major products of the over-all process include H2, CO, CH4, and CO2 as gases, process include H2, CO, CH4, and CO2 as gases, and water and tar as liquids. Mathematical modeling and laboratory experimentation have been carried out to increase understanding of the important parameters of the in-situ gasification process. The purpose of this paper is to present a mathematical description of paper is to present a mathematical description of the gasification process, together with results obtained from calculations and laboratory-scale gasification reactor experiments. The long-range goal of our modeling effort is to acquire the ability to predict resource recovery for a variety of different field geometries and operating conditions. This is a multidimensional, multiphase flow problem. The preliminary model described here is a transient, one-dimensional model of the gasification process in a packed bed. The primary reason for its development is to provide a framework in which to test the importance of accurate specification of the large number of physical and chemical processes involved in gasification. This will be accomplished primarily through comparisons with carefully controlled experiments performed in the 1.6-m reactor. SPEJ P. 105


Author(s):  
Michael Green

Underground coal gasification is a conversion and extraction process, for the production of useful synthetic product gas from an in-situ coal seam, to use in power generation, heat production or as a chemical feedstock. While many variants of the underground coal gasification process have been considered and over 75 trials performed throughout the world, the recent work has tended to focus on the control of the process, its environmental impact on underground and surface conditions and its potential for carbon capture and storage. Academic research has produced a set of mathematical models of underground coal gasification, and the European Union-supported programme has addressed the production of a decarbonised product gas for carbon capture and storage. In recent years, significant progress has been made into the modelling of tar formation, spalling, flows within the cavity and the control of minor gasification components, like BTEX and phenols, from underground coal gasification cavities (BTEX refers to the chemicals benzene, toluene, ethylbenzene and xylene). The paper reviews the most recent underground coal gasification field trial and modelling experience and refers to the pubic concern and caution by regulators that arise when a commercial or pilot-scale project seeks approval. It will propose solutions for the next generation of underground coal gasification projects. These include the need to access deeper coal seams and the use of new techniques for modelling the process.


Sign in / Sign up

Export Citation Format

Share Document