Ag–Loaded Polypyrrole/Carbon Nanotube: One-Step In Situ Polymerization and Improved Capacitance
Ternary composites of Ag–loaded polypyrrole/carbon nanotube (Ag–PPy/CNT) are prepared using a one–step in situ polymerization. Ag nanoparticles are uniformly decorated on the core–shell PPy/CNT networks. This approach provides a simple, easily accessible strategy for preparing three–dimensional noble metal–conductive polymer–carbon nanotube composites. Electrochemical properties of Ag–loaded composites are evaluated to understand the effect of Ag on the structure and kinetic process of the composite. Results indicate that the composites have good electrochemical reversibility and high specific capacitance. The specific capacitiance of Ag–PPy/CNT composites are enhanced greatly from 206.7 F g–1 of PPy/CNT composites to 528.6 F g–1 at 3 mA cm–2. This demonstrates that combining nano–sized Ag with supercapacitor materials is very effective in promoting electrochemical performance of materials.