Application of Neural Network Based on Genetic Algorithm to Predict Hypotension Events during Spinal Anesthesia

2012 ◽  
Vol 542-543 ◽  
pp. 1394-1397
Author(s):  
Yu Qiu ◽  
Hai Jun Dai

An accurate and efficient artificial neural network (ANN) based genetic algorithm (GA) is presented for predicting hypotension during general anesthesia. The genetic algorithm global optimization characteristics are used to optimize the BP neural network weights, and learning samples are trained and modeled by BP neural network with optimal parameters. The simulation experiment is carried out with MATLAB. The result indicated that the model forecasting results are close with the actual results and meet the accuracy requirement to General Anesthesia.


2012 ◽  
Vol 569 ◽  
pp. 733-736
Author(s):  
Hai Jun Dai ◽  
Yu Qiu

Neural network model based on particle swarm optimization (PSO) was established for predicting hypotension during general anesthesia. The BP neural network parameters optimized by pso, and learning samples are trained and modeled by BP neural network with optimal parameters. The simulation experiment is carried out with MATLAB. The result indicated that the model forecasting results are close with the actual results and meet the accuracy requirement to General Anesthesia.



Author(s):  
Sandip K Lahiri ◽  
Kartik Chandra Ghanta

Four distinct regimes were found existent (namely sliding bed, saltation, heterogeneous suspension and homogeneous suspension) in slurry flow in pipeline depending upon the average velocity of flow. In the literature, few numbers of correlations has been proposed for identification of these regimes in slurry pipelines. Regime identification is important for slurry pipeline design as they are the prerequisite to apply different pressure drop correlation in different regime. However, available correlations fail to predict the regime over a wide range of conditions. Based on a databank of around 800 measurements collected from the open literature, a method has been proposed to identify the regime using artificial neural network (ANN) modeling. The method incorporates hybrid artificial neural network and genetic algorithm technique (ANN-GA) for efficient tuning of ANN meta parameters. Statistical analysis showed that the proposed method has an average misclassification error of 0.03%. A comparison with selected correlations in the literature showed that the developed ANN-GA method noticeably improved prediction of regime over a wide range of operating conditions, physical properties, and pipe diameters.



2010 ◽  
Vol 37 (5) ◽  
pp. 1203-1208
Author(s):  
肖光宗 Xiao Guangzong ◽  
龙兴武 Long Xingwu ◽  
张斌 Zhang Bin ◽  
吴素勇 Wu Suyong ◽  
赵洪常 Zhao Hongchang ◽  
...  


2014 ◽  
Vol 902 ◽  
pp. 431-436 ◽  
Author(s):  
A. Shahpanah ◽  
S. Poursafary ◽  
S. Shariatmadari ◽  
A. Gholamkhasi ◽  
S.M. Zahraee

A queuing network model related to arrival, departure and berthing process of ships at port container terminal is presented in this paper. The important datas collected from PTP port container terminal located at Malaysia. Based on the case study the model was built with using Arena 13.5 simulation software. Especially this study proposes a hybrid approach consisting of Genetic algorithm (GA), Artificial Neural Network (ANN) to find the the optimum number of equipments at berthing area of port container terminal. The input data that used in ANN obtained from Arena results. The main goal of this study is reduced waiting time of each ship at port container terminal, and Based on the result the optimum waiting time 50 will be achieved.



Economic Denial of Sustainability (EDoS) is a latest threat in the cloud environment in which EDoS attackers continually request huge number of resources that includes virtual machines, virtual security devices, virtual networking devices, databases and so on to slowly exploit illegal traffic to trigger cloud-based scaling capabilities. As a result, the targeted cloud ends with a consumer bill that could lead to bankruptcy. This paper proposes an intelligent reactive approach that utilizes Genetic Algorithm and Artificial Neural Network (GANN) for classification of cloud server consumer to minimize the effect of EDoS attacks and will be beneficial to small and medium size organizations. EDoS attack encounters the illegal traffic so the work is progressed into two phases: Artificial Neural Network (ANN) is used to determine affected path and to detect suspected service provider out of the detected affected route which further consist of training and testing phase. The properties of every server are optimized by using an appropriate fitness function of Genetic Algorithm (GA) based on energy consumption of server. ANN considered these properties to train the system to distinguish between the genuine overwhelmed server and EDoS attack affected server. The experimental results show that the proposed Genetic and Artificial Neural Network (GANN) algorithm performs better compared to existing Fuzzy Entropy and Lion Neural Learner (FLNL) technique with values of precision, recall and f-measure are increased by 3.37%, 10.26% and 6.93% respectively.



2019 ◽  
Vol 232 ◽  
pp. 1418-1429 ◽  
Author(s):  
Yeonju Shin ◽  
Ziehyun Kim ◽  
Jihye Yu ◽  
Geonjung Kim ◽  
Sungwon Hwang


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-10 ◽  
Author(s):  
Aydin Azizi

Industrial robots have a great impact on increasing the productivity and reducing the time of the manufacturing process. To serve this purpose, in the past decade, many researchers have concentrated to optimize robotic models utilizing artificial intelligence (AI) techniques. Gimbal joints because of their adjustable mechanical advantages have been investigated as a replacement for traditional revolute joints, especially when they are supposed to have tiny motions. In this research, the genetic algorithm (GA), a well-known evolutionary technique, has been adopted to find optimal parameters of the gimbal joints. Since adopting the GA is a time-consuming process, an artificial neural network (ANN) architecture has been proposed to model the behavior of the GA. The result shows that the proposed ANN model can be used instead of the complex and time-consuming GA in the process of finding the optimal parameters of the gimbal joint.



Sign in / Sign up

Export Citation Format

Share Document