An Improved Clustering Algorithm Based on Coverage Area for Wireless Sensor Networks

2012 ◽  
Vol 542-543 ◽  
pp. 643-646
Author(s):  
Li Jun Chen

Clustering is an effective topology control approach in wireless sensor networks, which can increase network scalability and lifetime. A clustering algorithm based on the total number of neighbor nodes is proposed to maximize the lifetime of the network. The larger amount of neighbor nodes, the more chance a node has to be selected as a cluster head. Therefore, it can ensure the minimum cluster heads in the whole network. By closing the communication parts of cluster head to avoid selecting as cluster head in next epoch, the energy of the whole system is consumed symmetrically. The simulations demonstrate the effectiveness of the algorithm.

2012 ◽  
Vol 433-440 ◽  
pp. 5228-5232
Author(s):  
Mohammad Ahmadi ◽  
Hamid Faraji ◽  
Hossien Zohrevand

A sensor network has many sensor nodes with limited energy. One of the important issues in these networks is the increase of the life time of the network. In this article, a clustering algorithm is introduced for wireless sensor networks that considering the parameters of distance and remaining energy of each node in the process of cluster head selection. The introduced algorithm is able to reduce the amount of consumed energy in the network. In this algorithm, the nodes that have more energy and less distance from the base station more probably will become cluster heads. Also, we use algorithm for finding the shortest path between cluster heads and base station. The results of simulation with the help of Matlab software show that the proposed algorithm increase the life time of the network compared with LEACH algorithm.


2013 ◽  
Vol 13 (Special-Issue) ◽  
pp. 88-99 ◽  
Author(s):  
Yang Wang

Abstract The traditional clustering algorithm of Low-Energy Adaptive Clustering Hierarchy (LEACH) does not care about the residual energy of the cluster heads and the distance relationship of each node in the wireless sensor networks (WSNs). Each new round the cluster head is changed without any concern about the residual energy of the current cluster head, and the nodes join into a new cluster head without concern about the distance factor and the residual energy factor of all nodes in WSNs. To solve these problems in LEACH, this paper puts forward a distributed energy balance clustering algorithm, which takes into full consideration the residual energy of the cluster heads and the distance relationship between the base station and the cluster heads. The experimental results indicate that the proposed distributed energy balance clustering algorithm can prolong the lifetime of the networks more than LEACH, and the number of messages for selecting a new cluster head at the same time can be greatly reduced, which proves it as more suitable for practical applications.


2010 ◽  
Vol 11 (1) ◽  
pp. 51-69
Author(s):  
S. M. Mazinani ◽  
J. Chitizadeh ◽  
M. H. Yaghmaee ◽  
M. T. Honary ◽  
F. Tashtarian

In this paper, two clustering algorithms are proposed. In the first one, we investigate a clustering protocol for single hop wireless sensor networks that employs a competitive scheme for cluster head selection. The proposed algorithm is named EECS-M that is a modified version to the well known protocol EECS where some of the nodes become volunteers to be cluster heads with an equal probability.  In the competition phase in contrast to EECS using a fixed competition range for any volunteer node, we assign a variable competition range to it that is related to its distance to base station. The volunteer nodes compete in their competition ranges and every one with more residual energy would become cluster head. In the second one, we develop a clustering protocol for single hop wireless sensor networks. In the proposed algorithm some of the nodes become volunteers to be cluster heads. We develop a time based competitive clustering algorithm that the advertising time is based on the volunteer node’s residual energy. We assign to every volunteer node a competition range that may be fixed or variable as a function of distance to BS. The volunteer nodes compete in their competition ranges and every one with more energy would become cluster head. In both proposed algorithms, our objective is to balance the energy consumption of the cluster heads all over the network. Simulation results show the more balanced energy consumption and longer lifetime.


2019 ◽  
Vol 7 (2) ◽  
pp. 7-16
Author(s):  
Poonam Mittal ◽  

Dynamic and cooperative nature of sensor nodes in Wireless Sensor Networks raises question on security. Various researchers work in this direction to spot malicious, selfish and compromised nodes. Various mechanisms followed are uniqueness of clustering, reputation system and an operation at specific nodes. LEACH is a hierarchical protocol in which most nodes transmit to cluster heads, and the cluster heads aggregate and compress the data and forward it to the base station (sink). Each node uses a stochastic algorithm at each round to determine whether it will become a cluster head in this round. Clustering process carried out in two stages takes the role of the reputation scheme and reveals specific operation at CH, IN and MNs beside their usual activities in cluster based wireless sensor networks. This paper mentioned the final structure of the security framework, corresponding attacks and defense mechanism of the model. It also discusses various security level processes of wireless sensor networks. Results implies that in a cluster-based protocol such as LEACH in which optimally 5% of the nodes are cluster heads it is likely that a significant portion of the network can be paralyzed or the entire network disabled, in the worst-case scenario, if these cluster heads are compromised. Our main contribution in this paper is our novel approach in maintaining trusted clusters through a trust-based decision-making cluster head election algorithm.


Sensors ◽  
2019 ◽  
Vol 19 (20) ◽  
pp. 4391 ◽  
Author(s):  
Juan-Carlos Cuevas-Martinez ◽  
Antonio-Jesus Yuste-Delgado ◽  
Antonio-Jose Leon-Sanchez ◽  
Antonio-Jose Saez-Castillo ◽  
Alicia Triviño-Cabrera

Clustering is presently one of the main routing techniques employed in randomly deployed wireless sensor networks. This paper describes a novel centralized unequal clustering method for wireless sensor networks. The goals of the algorithm are to prolong the network lifetime and increase the reliability of the network while not compromising the data transmission. In the proposed method, the Base Station decides on the cluster heads according to the best scores obtained from a Type-2 Fuzzy system. The input parameters of the fuzzy system are estimated by the base station or gathered from the network with a careful design that reduces the control message exchange. The whole network is controlled by the base station in a rounds-based schedule that alternates rounds when the base station elects cluster heads, with other rounds in which the cluster heads previously elected, gather data from their contributing nodes and forward them to the base station. The setting of the number of rounds in which the Base Station keeps the same set of cluster heads is another contribution of the present paper. The results show significant improvements achieved by the proposal when compared to other current clustering methods.


2015 ◽  
Vol 785 ◽  
pp. 744-750
Author(s):  
Lei Gao ◽  
Qun Chen

In order to solve the energy limited problem of sensor nodes in the wireless sensor networks (WSN), a fast clustering algorithm based on energy efficiency for wire1ess sensor networks is presented in this paper. In the system initialization phase, the deployment region is divided into several clusters rapidly. The energy consumption ratio and degree of the node are chosen as the selection criterion for the cluster head. Re-election of the cluster head node at this time became a local trigger behavior. Because of the range of the re-election is within the cluster, which greatly reduces the complexity and computational load to re-elect the cluster head node. Theoretical analysis indicates that the timing complexity of the clustering algorithm is O(1), which shows that the algorithm overhead is small and has nothing to do with the network size n. Simulation results show that clustering algorithm based on energy efficiency can provide better load balancing of cluster heads and less protocol overhead. Clustering algorithm based on energy efficiency can reduce energy consumption and prolong the network lifetime compared with LEACH protocol.


2014 ◽  
Vol 667 ◽  
pp. 291-299
Author(s):  
Chun Xi Yang ◽  
Chao Sun ◽  
Sha Fan ◽  
Ning Wu

According to these constrains that wireless sensor networks are composed of many wireless nodes with limited power, a new energy efficient cluster-based distributed consensus kalman filtering algorithm is proposed in this paper. In this algorithm, each cluster contains a cluster-head and some member nodes where the cluster-head is used to fuse data which come from member nodes and consensus process between neighbor cluster-head. This clustering method divide wireless sensor networks into two classes of networks: cluster units network and cluster-heads network. In this way, numbers of information transmission among nodes are reduced efficiently and communication distances among nodes are also shortened. As a result, node’s energy in wireless sensor network can be saved greatly. Moreover, Gossip algorithm is introduced to deal with the consensus problem between cluster-heads for improving power consumption and the convergence analysis for the algorithm which is given by applying to graph theory and matrix theory. Finally, a simulation example is given to show the effectively of our method.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Jun Wang ◽  
Zhuangzhuang Du ◽  
Zhengkun He ◽  
Xunyang Wang

Balancing energy consumption using the clustering routing algorithms is one of the most practical solutions for prolonging the lifetime of resource-limited wireless sensor networks (WSNs). However, existing protocols cannot adequately minimize and balance the total network energy dissipation due to the additional tasks of data acquisition and transmission of cluster heads. In this paper, a cluster-head rotating election routing protocol is proposed to alleviate the problem. We discovered that the regular hierarchical clustering method and the scheme of cluster-head election area division had positive effects on reducing the energy consumption of cluster head election and intracluster communication. The election criterion composed of location and residual energy factor was proved to lower the probability of premature death of cluster heads. The chain multihop path of intercluster communication was performed to save the energy of data aggregation to the base station. The simulation results showed that the network lifetime can be efficiently extended by regulating the adjustment parameters of the protocol. Compared with LEACH, I-LEACH, EEUC, and DDEEC, the algorithm demonstrated significant performance advantages by using the number of active nodes and residual energy of nodes as the evaluation indicators. On the basis of these results, the proposed routing protocols can be utilized to increase the capability of WSNs against energy constraints.


2018 ◽  
Vol 19 (1) ◽  
pp. 72-90
Author(s):  
Seyed Mohammad Bagher Musavi Shirazi ◽  
Maryam Sabet ◽  
Mohammad Reza Pajoohan

Wireless sensor networks (WSNs) are a new generation of networks typically consisting of a large number of inexpensive nodes with wireless communications. The main purpose of these networks is to collect information from the environment for further processing. Nodes in the network have been equipped with limited battery lifetime, so energy saving is one of the major issues in WSNs. If we balance the load among cluster heads and prevent having an extra load on just a few nodes in the network, we can reach longer network lifetime. One solution to control energy consumption and balance the load among nodes is to use clustering techniques. In this paper, we propose a new distributed energy-efficient clustering algorithm for data aggregation in wireless sensor networks, called Distributed Clustering for Data Aggregation (DCDA). In our new approach, an optimal transmission tree is constructed among sensor nodes with a new greedy method. Base station (BS) is the root, cluster heads (CHs) and relay nodes are intermediate nodes, and other nodes (cluster member nodes) are the leaves of this transmission tree. DCDA balances load among CHs in intra-cluster and inter-cluster data communications using different cluster sizes. For efficient inter-cluster communications, some relay nodes will transfer data between CHs. Energy consumption, distance to the base station, and cluster heads’ centric metric are three main adjustment parameters for the cluster heads election. Simulation results show that the proposed protocol leads to the reduction of individual sensor nodes’ energy consumption and prolongs network lifetime, in comparison with other known methods. ABSTRAK: Rangkaian sensor wayarles (WSN) adalah rangkaian generasi baru yang terdiri daripada nod-nod murah komunikasi wayarles. Tujuan rangkaian-rangkaian ini adalah bagi mengumpul maklumat sekeliling untuk proses seterusnya. Nod dalam rangkaian ini dilengkapi bateri kurang jangka hayat, jadi simpanan tenaga adalah satu isu besar dalam WSN. Jika beban diimbang antara induk kelompok dan lebihan beban dihalang pada setiap rangkaian iaitu hanya sebilangan kecil nod pada tiap-tiap kelompok,  jangka hayat dapat dipanjangkan pada sesebuah rangkaian. Satu penyelesaian adalah dengan mengawal penggunaan tenaga dan mengimbangi beban antara nod menggunakan teknik berkelompok. Kajian ini mencadangkan kaedah baru pembahagian tenaga berkesan secara algoritma berkelompok bagi pembahagian data dalam WSN, dikenali sebagai Pembahagian Kelompok Kumpulan Data (DCDA). Melalui pendekatan baru ini, pokok transmisi optimum dibina antara nod sensor melalui kaedah baru. Stesen utama (BS) ialah akar, induk kelompok-kelompok (CHs) dan nod penyiar ialah nod perantara, dan nod-nod lain (nod-nod ahli kelompok) ialah daun bagi pokok trasmisi. DCDA mengimbangi beban CHs antara-kelompok dan dalam-kelompok komunikasi data daripada kelompok berbeza saiz. Bagi komunikasi berkesan dalam-kelompok, sebahagian nod penyampai akan memindahkan data antara CHs. Penggunaan tenaga, jarak ke stesen utama dan induk kelompok metrik sentrik adalah tiga parameter pelaras bagi pemilihan induk kelompok. Keputusan simulasi protokol yang dicadang menunjukkan pengurangan penggunaan tenaga pada nod-nod sensor individu dan memanjangkan jangka hayat rangkaian, berbanding kaedah-kaedah lain yang diketahui.


Sign in / Sign up

Export Citation Format

Share Document