Enhanced Heat Conduction in Cellulose Nanocrystals Grafting Polyethylene Glycol as Solid-Solid Phase Change Materials

2012 ◽  
Vol 557-559 ◽  
pp. 563-566 ◽  
Author(s):  
Yan Nan Liu ◽  
Hou Yong Yu ◽  
Zong Yi Qin ◽  
Long Chen

Green copolymers as phase change material were prepared by grafting polyethylene glycol(PEG) onto a rigid molecular skeleton of cellulose nanocrystals (CNs), and their thermal properties were studied by thermal delay method and differential scanning calorimetry. The influences of the CNs on the thermal conductivity behavior and thermal energy storage capacity of the copolymers were evaluated. As expected, a great enhancement on thermal conduction can be achieved by introducing CNs.

2013 ◽  
Vol 785-786 ◽  
pp. 613-617
Author(s):  
Gui Fang Wang ◽  
Dong Ying Li ◽  
Guang Ling Pei

A novel solid-solid phase change materials was synthesized by the two-step condensation reaction of polyethylene glycol (PEG1000), neopentyl glycol (NPG) and 4, 4-diphenylmethane diisocyanate (MDI). Polyethylene glycol (PEG1000) was used as soft segment and 4, 4-diphenylmethane diisocyanate (MDI) as hard segment. The composition, structure and phase change properties were characterized by Fourier transform infrared spectroscopy (FT-IR), differential scanning calorimetry (DSC), thermogravimetric analyzer (TGA), polarization optical microscopy (POM) respectively. The results indicated that the PCM appeared typical solid-solid phase transition property and the phase change enthalpy and phase transition temperature reached to 120.45 J/g and 37.32°C, respectively.


2014 ◽  
Vol 703 ◽  
pp. 3-8 ◽  
Author(s):  
Jing Guo ◽  
Xiang Kang You ◽  
Li Zhang ◽  
Heng Xue Xiang ◽  
Sen Zhang ◽  
...  

In this study, novel solid–solid phase change materials (PCM) composed of polyacrylonitrile, binary of fatty acids ((blending of stearic acid (SA) and lauric acid (LA)) and zeolite molecular sieve (ZMS) were prepared by solution blending process. The structure and properties of the PCM were characterized using flourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), polarized optical microscopy (POM), differential scanning calorimetry (DSC) and thermogravimetric analysis (TG), respectively. DSC analysis indicated that the crystallization latent heat of the PCM was 125.22 J/g and its phase transition temperature was about 17 °C. The temperature curve for step cooling of the PCM showed that it’s holding time achieved 1 480 s, which explains that the PCM had excellent heat-insulating properties. Based on all results it can be concluded that the novel PCM can be considered as potential PCM for thermal energy storage.


2011 ◽  
Vol 284-286 ◽  
pp. 1983-1986 ◽  
Author(s):  
Qi Song Shi ◽  
Tai Qi Liu

This study involved the preparation and characterization of polyethylene glycol (PEG)/ polyacrylamide (PAM) composite as solid-solid phase change materials (PCM). In this study, the polyethylene glycol / polyacrylamide composites as solid-solid phase change material was prepared, and the phase change behavior and crystalline morphology of the phase change materials were investigated using differential scanning calorimeter (DSC) , wide-angle X-ray diffraction (WAXD). Results indicated that the composite remained solid when the weight percentage of PEG was less than 60%. The PEG/PAM composite that exhibited solid-solid phase change behavior can be used as a new kind of phase change material for the shortage of thermal energy and temperature control.


2012 ◽  
Vol 512-515 ◽  
pp. 1712-1715
Author(s):  
Xiao Hua Gu ◽  
Bao Yun Xu ◽  
Jia Liang Zhou ◽  
Shi Wei Li

This paper details the preparation of one kind of PEG/MMT solid-solid phase change materials. With polyethylene glycol (PEG) as the phase change materials, montmorillonite (MMT) as skeletons, through the graft copolymerization method, prepare PEG/MMT solid-solid phase change energy storage materials. The structure, the phase transition behavior and thermal stability of PEG/MMT phase change materials were analyzed and studied by infrared spectroscopy (FTIR), thermogravimetry (TG) and differential scanning calorimetry (DSC), and studied the influence of different molecular weight PEG on the capability and structure of the material, polymer phase change energy storage behavior and crystallization behavior. Finally, The PEG/MMT solid-solid phase change material could improve enthalpy value and thermal stability.


2020 ◽  
Vol 2 (3) ◽  
pp. 167-177 ◽  
Author(s):  
Junwen Huang ◽  
Houyong Yu ◽  
Somia Yassin Hussain Abdalkarim ◽  
Jaromir Marek ◽  
Jiri Militky ◽  
...  

2013 ◽  
Vol 773 ◽  
pp. 534-537 ◽  
Author(s):  
Li Li Feng ◽  
Jing Jing Tong ◽  
Chong Yun Wang

Shape-stabilized phase change material (PCM) composed of polyethylene glycol and silica hollow nanospheres was prepared by a vacuum impregnating method. Thermal properties of the composite PCM were investigated by various techniques. Lower phase change temperature and enthalpy of the composite PCM were observed. It is concluded that the phase change properties of the composite PCM are influenced by the adsorption confinement of the PEG segments from the porous structure of the silica hollow nanospheres.


2012 ◽  
Vol 182-183 ◽  
pp. 217-221 ◽  
Author(s):  
Ji Hu ◽  
Wan Hui Wang

A novel hyperbranched polyurethane solid-solid phase change heat storage material (HB-PUPCM) using hyperbranched polyester as chain extender was synthesized via a two-step process. Differential scanning calorimetry (DSC) and polarizing optical microscopy (POM) were performed to investigate the phase transition behaviors and crystalline morphology. The results indicated that the HB-PUPCM was a good polymeric solid-solid phase change heat storage material.


Sign in / Sign up

Export Citation Format

Share Document