The Study of 3-D Magnetic Field Finite Element Analysis for Giant Magnetostrictive Actuator

2012 ◽  
Vol 605-607 ◽  
pp. 1427-1430 ◽  
Author(s):  
Fan Zhang ◽  
Zhi Xin Ma ◽  
Shang Gao

Based on the structure and working principle of our giant magnetostrictive actuator (GMA), the properties of the driving magnetic field were researched. A 3-D nonlinear magnetic field model of the GMA was established with the finite element analysis method, and the magnetic field distribution of the GMA was obtained with the software ANSYS. Then the 3-D model helped us to find the effects about the distribution of magnetic field of the GMA from the structure. The 3-D magnetic field finite element analysis model can give us a new tool of GMA design and analysis.

2012 ◽  
Vol 24 (3) ◽  
pp. 326-333 ◽  
Author(s):  
Yu-Chi Chen ◽  
Wen-Ching Ko ◽  
Han-Lung Chen ◽  
Hsu-Ching Liao ◽  
Wen-Jong Wu ◽  
...  

We propose a model to give us a method to investigate the characteristic three-dimensional directivity in an arbitrarily configured flexible electret-based loudspeaker. In recent years, novel electret loudspeakers have attracted much interest due to their being lightweight, paper thin, and possessing excellent mid- to high-frequency responses. Increasing or decreasing the directivity of an electret loudspeaker makes it excellent for adoption to many applications, especially for directing sound to a particular area or specific audio location. Herein, we detail a novel electret loudspeaker that possesses various directivities and is based on various structures of spacers instead of having to use multichannel amplifiers and a complicated digital control system. In order to study the directivity of an electret loudspeaker based on an array structure which can be adopted for various applications, the horizontal and vertical polar directivity characteristics as a function of frequency were simulated by a finite-element analysis model. To validate the finite-element analysis model, the beam pattern of the electret loudspeaker was measured in an anechoic room. Both the simulated and experimental results are detailed in this article to validate the various assertions related to the directivity of electret cell-based smart speakers.


2012 ◽  
Vol 204-208 ◽  
pp. 1748-1753
Author(s):  
Jing Cai ◽  
Zong Bao Yue

In the airport pavement design, the critical load position has the guiding significance for the airport pavement slab design. The finite element analysis model of rigid airport pavement is built, and 2-slab model and 9-slab model are analyzed. The corresponding load positions are obtained when the maximum stress and the maximum vertical displacement happen


2013 ◽  
Vol 706-708 ◽  
pp. 1140-1145
Author(s):  
Fang Liu ◽  
Wen Ming Cheng ◽  
Yi Zhou

Since the posture of portable exoskeleton is consistent with human motion and each joint degree of freedom is same, on the basis of DOF coupling in portable exoskeleton, the finite element analysis of the mechanical structure in portable exoskeleton has been calculated. According to the anthropomorphic mechanism design method, the universal joint structure has been used to meet the requirements of degrees of freedom in the mechanical structure of the exoskeleton; using the Hydraulic cylinder to simulate the contraction or stretch of human muscle, and the three-dimensional model of the exoskeleton mechanical systems has been created with the Solidworks software; selecting Human CAD software and setting the parameters of the movement of the human body model, the variations of the various joints can be obtained; using the Parasolid as the standard format for data transfer between the two software Solidworks and ANSYS, the finite element analysis model was established, and according to the principle of coupling, the three translational DOF and two rotating DOF was coupled, besides through both legs vertical standing, one knee kneeling, and one leg vertical standing three conditions, the exoskeleton strength was analyzed. The simulation results show that under the three conditions, a concentrated stress all has been found in the exoskeleton structure, besides the concentrated stresses all have been obtained in the cross-section changing site or the junction of the two components, which stress values exceeded the allowable stress values of the aluminum alloy material, so the suggestions for improvement of the structure are put forward in the article; at the same time, the simulation results provide a numerical basis for the optimization of the portable exoskeleton structure.


Author(s):  
Constantinos Franceskides ◽  
Michael Gibson ◽  
Peter Zioupos

Patient-specific computational models are powerful tools which may assist in predicting the outcome of invasive surgery on the musculoskeletal system, and consequently help to improve therapeutic decision-making and post-operative care. Unfortunately, at present the use of personalized models that predict the effect of biopsies and full excisions is so specialized that tends to be restricted to prominent individuals, such as high-profile athletes. We have developed a finite element analysis model to determine the influence of the location of an ellipsoidal excision (14.2 mm × 11.8 mm) on the structural integrity of a human skull when exposed to impact loading, representing a free fall of an adult male from standing height. The finite element analysis model was compared to empirical data based on the drop-tower testing of three-dimensional-printed physical skull models where deformations were recorded by digital image correlation. In this bespoke example, we found that the excision site did not have a major effect on the calculated stress and strain magnitudes unless the excision was in the temporal region, where the reduction in stiffness around the excision caused failure within the neighboring area. The finite element analysis model allowed meaningful conclusions to be drawn for the implications of using such a technique based on what we know about such conditions indicating that the approach could be both clinically beneficial and also cost-effective for wider use.


2013 ◽  
Vol 712-715 ◽  
pp. 1080-1083
Author(s):  
Hu Qi Wang ◽  
Hai Zhao He ◽  
Hai Yan Lu ◽  
Rong Xing Huang

A large-scale forklift's wheel rim appeared cracking phenomenon in the course of use. This article summarized and analyzed force of the forklift's wheel rim according to the typical working conditions of forklift, and calculated the load of various working conditions. It provided the correct boundary conditions for the finite element analysis of the wheel rim [. After the analysis of wheel rim's three typical conditions, found the weak parts of the structure of the rim, and this part was consistent with the feedback part, so it proved correct of the finite element analysis model. Clever was used ribbed-plate and punching groove to strengthen the weak part of wheel rim and the finite element model was used to calculate and check the improved wheel rim again. The results showed that the improved wheel rim stress decreased quite, so the measure was correct.


2013 ◽  
Vol 712-715 ◽  
pp. 1037-1040
Author(s):  
Wei Yu Wang ◽  
Tuo Zhao

The numerical analysis model about pile-raft foundation was bulited by using finite element analysis software.The raft settlement, pile-top counterforce and soil counter force were analyzed by changing the thickness of raft .The thickness were 0.15m,0.20m,0.25m and 0.30m. It was said that it could effectively reduce the raft uneven settlement and realize the redistribution of the pile and soil counterforce by increasing raft thickness.After changing the pile length and the raft thickness The rule of raft settlement were analyzed. After the pile length and thickness of optimization,it was good to control settlement of the pile raft foundation.


2014 ◽  
Vol 599-601 ◽  
pp. 940-943
Author(s):  
Fei Zhou ◽  
Guo Min Lin ◽  
Miao Shang ◽  
Wen Guang Zhang

Capacitive sensor is a kind of parameter type sensor that capacitance is measured is converted to capacitance change. It is widely used in pressure, liquid level, displacement and other tests. In this article, the development status of capacitance sensor is showed; the working principle of capacitive sensor was introduced; through the method of grid subdivision, loading and solving of boundary conditions and the finite element post-processing, etc., the finite element analysis of capacitance sensor is complete, it has important guiding significance for capacitance sensor application research.


2001 ◽  
Author(s):  
A. Saigal ◽  
R. Greif ◽  
Y. Duan ◽  
M. A. Zimmerman

Abstract The multiaxial impact behavior of CYCOLAC GPM5500 (ABS glassy polymer) is obtained as a function of impact velocity and temperature from the standard impact test as specified by ASTM D3763. Finite element analysis (FEA) and ABAQUS/Explicit are used to model the impact behavior of the polymer. The generalized “DSGZ” constitutive model, previously developed by the authors and calibrated using low strain rate uniaxial mechanical test data, is extended to the high strain rate regime and used in the finite element analysis. Load-displacement curves from the finite element analysis are compared with the experimental data and agree well up to the maximum impact load (failure). Therefore, the proposed finite element analysis model can be used to predict the multiaxial impact behaviors of polymers at different temperatures and impact velocities.


2014 ◽  
Vol 602-605 ◽  
pp. 1590-1593
Author(s):  
Han Xin Chen ◽  
Shi Qi Yang

With the continuous development of the ultrasonic detection technology, ultrasonic time of flight diffraction (TOFD) method has been widely applied. The paper investigated the TOFD technique in the detection of natural defects. TOFD detection experiment is established in Lab. The finite element analysis simulation of A-scan signal and ultrasonic TOFD technique in the detection of the longitudinal arrangement of pores defects within the weld specimen transmission are studied. The feasibility and correctness of the finite element analysis model are verified by comparing the experimental signals with the simulation signals.


Sign in / Sign up

Export Citation Format

Share Document