The Control Strategy and Simulation of Three-Phase Grid-Connected Photovoltaic System

2012 ◽  
Vol 608-609 ◽  
pp. 164-168
Author(s):  
Jian Jun Su ◽  
Men Yue Hu ◽  
Hong Yan Gong ◽  
Hai Tao Sun ◽  
Zhi Jian Hu ◽  
...  

Firstly the research situation for grid-connected photovoltaic (PV) is introduced, then, the engineering mathematical model of PV cells is introduced. The perturbation and observation algorithm is chosen as the maximum power point tracking (MPPT) algorithm. The SPWM double-loop control strategy with outer voltage loop and inner current loop is described and a three-phase grid-connected photovoltaic model is established. The simulation results demonstrate the validity and correctness of the simulation model built in this paper.

Maximum power point tracking is a method employed to produce the utmost power available from the photovoltaic module. To date, many algorithms for maximum power point tracking technique had been stated, every with its own capabilities. In this paper, a Luo converter with high-voltage conversion gain is employed to track photovoltaic panels at maximum power and to step up the voltage to a higher level. This work also aims to validate the performance of the maximum power point tracking system with Luo converter which utilizes incremental conductance techniques. Space vector modulation and sinusoidal pulse width modulations are the control techniques employed to control the three-phase voltage source converter. In order to measure the overall performance indices of the proposed system, a simulation is carried out in MATLAB / Simulink environment.


Designs ◽  
2020 ◽  
Vol 4 (4) ◽  
pp. 51
Author(s):  
Mahdi Shahparasti ◽  
Mehdi Savaghebi ◽  
Ebrahim Adabi ◽  
Thomas Ebel

This paper aims to present a new structure of the parallel Z-source inverters (ZSIs) for dual-input single-phase grid-connected photovoltaic (PV) systems. The ZSI is a single-stage buck-boost converter that uses an inductor-capacitor network between the inverter bridge and the PV string and follows the maximum power point by applying the shoot-through vector. Therefore, a DC/DC converter is no longer needed to track the maximum power point, and the cost and complexity of the power conditioning system (PCS) are reduced. For controlling the proposed PCS, a cascade control structure is employed in this paper. The inner current loop injects the maximum active power with unity power factor sinusoidal current to the grid. The outer capacitor voltage loop is applied to control capacitors voltages in the Z-source networks. Additionally, an enhanced dual-string maximum power point tracking (eDS-MPPT) method is proposed to find MPPs with minimum burden competitional. The eDS-MPPT does not need the PVs voltages measurements compared to other MPPT methods. The simulation results confirm the accuracy of the performance of the system.


Sign in / Sign up

Export Citation Format

Share Document