Influence of Soil Consolidation History on Seismic Response of Underground Structure in Layered Liquefiable Ground

2013 ◽  
Vol 639-640 ◽  
pp. 670-677
Author(s):  
Zhi Fan Xia ◽  
Yan Ling Zheng ◽  
Guan Lin Ye

It is shown that liquefaction induced uplift is one of the most typical disasters for underground structures in liquefiable zone. Though a lot of researches were conducted to investigate the uplift phenomenon of underground structures in the past years, further studies need to be carried out to discover its mechanism because the seismic responses were correlated with many factors. In the paper, a fully coupled dynamic analysis was performed to investigate the dynamic responses of underground structure in layered saturated ground. The soils were simulated by a cyclic mobility constitutive model, which adopted some important concepts such as stress induced anisotropy, subloading yield surface, and superloading yield surface. It was verified that the constitutive model can perfectly describe the dynamic character of both liquefiable sand and non-liquefiable clay. Simulated results were obtained for excess pore water pressure and deformation of soil deposit and uplift of underground structure. Special emphasis was given to discuss the influence of soil consolidation history on the seismic responses of underground structure. Simulation indicated that with the occurrence of liquefaction, soils at lateral sides of underground structure flowed toward the bottom of the structure, which led to the uplift of structure. Results also showed that the excess pore water pressure ratio of liquefiable soil decreased with the increasing of soil pre-consolidation pressure. Then the liquefied zones diminished, and the uplift of underground structure reduced.

2012 ◽  
Vol 446-449 ◽  
pp. 1621-1626 ◽  
Author(s):  
Yan Mei Zhang ◽  
Dong Hua Ruan

A practical saturated sand elastic-plastic dynamic constitutive model was developed on the base of Handin-Drnevich class nonlinear lag model and multidimensional model. In this model, during the calculation of loading before soil reaches yielding, unloading and inverse loading, corrected Handin-Drnevich equivalent nonlinear model was adopted; after soil yielding, based on the idea of multidimensional model, the composite hardening law which combines isotropy hardening and follow-up hardening, corrected Mohr-Coulomb yielding criterion and correlation flow principle were adopted. A fully coupled three dimension effective stress dynamic analysis procedure was developed on the base of this model. The seismic response of liquefaction foundation reinforced by stone columns was analyzed by the developed procedure. The research shows that with the diameter of stone columns increasing, the excess pore water pressure in soil between piles decreases; with the spacing of columns increasing, the excess pore water pressure increases. The influence of both is major in middle and lower level of composite foundation.


2002 ◽  
Vol 39 (5) ◽  
pp. 1126-1138 ◽  
Author(s):  
E Mohamedelhassan ◽  
J Q Shang

In this study, a vacuum and surcharge combined one-dimensional consolidation model is developed. Terzaghi's consolidation theory is revisited by applying the initial and boundary conditions corresponding to combined vacuum and surcharge loading on a soil. A test apparatus is designed, manufactured, and assembled to verify the model. The apparatus has the capacity of applying designated vacuum and surcharge pressures to a soil specimen, and it allows for the measurement of the excess pore-water pressure, settlement, and volume change during the consolidation process. Two series of tests are performed using the apparatus on two reconstituted natural clay soils, namely, the Welland sediment at water contents close to its liquid limit and the Orleans clay, reconstituted and consolidated under an effective stress of 60 kPa. The former test series mimics the strengthening of a very soft soil, such as the hydraulic fill used in land reclamation. The latter test series is designed to study vacuum–surcharge combined strengthening of a consolidated soil. It is demonstrated from the experiments that the one-dimensional vacuum-surcharge consolidation model describes the consolidation behaviour of both soils well. The consolidation characteristics of the soils show no discrimination against the nature of the consolidation pressure, namely, whether they are consolidated under the vacuum pressure alone, under the surcharge pressure alone, or under a pressure generated by the combined application of vacuum and surcharge. The study concluded that the soil consolidation characteristics obtained from the conventional consolidation tests can be used in the design of vacuum preloading systems, provided that the one-dimensional loading condition prevails.Key words: consolidation, soil improvement, vacuum pressure, surcharge pressure, excess pore-water pressure, soil consolidation parameters.


2014 ◽  
Vol 638-640 ◽  
pp. 355-359
Author(s):  
Bao Lin Xiong ◽  
Chun Jiao Lu

Under cyclic load, the major shortcoming–ratcheting is produced in Wolffersdorff hypoplastic constitutive model. For eliminating ratcheting, Wolffersdorff hypoplastic model is ameliorated based on intergranular strain tensor. The added parameters in ameliorated model are determined by optimization method. Under cyclic load of triaxial consolidation undrained condition, the mechanics features of sand are described by the ameliorated Wolffersdorff hypoplastic constitutive model. Preliminary result shows that with increasing times of cyclic load excess pore water pressure is increased gradually and effective stress is reduced gradually. When effective is reduced to zero, the liquefaction happens. So in many projects, excess pore water pressure must dissipate by means of some measures. The sand liquefaction under the dynamic load is avoided.


2019 ◽  
Vol 2019 ◽  
pp. 1-10
Author(s):  
Yang Shen ◽  
Jianting Feng ◽  
Yinghao Ma ◽  
Hanlong Liu

Soil voltage is generally assumed to show a linear relationship with distance from the cathode according to the established electroosmotic consolidation equation. However, this assumption is inconsistent with experimental results. To more reasonably reflect the soil consolidation process during electroosmosis treatment, it is necessary to consider the influence of the actual soil voltage distribution trend when establishing the electroosmotic consolidation equation. Electroosmosis results show that soil voltage exhibits nonlinear distribution characteristics against distance from the cathode. The change trend of soil voltage can be well reflected by cubic polynomial fitting. Then, the anodic electrode was taken as the research object, and a two-dimensional horizontal plane model of electroosmosis was established because it represents practical electroosmosis applications more closely than some other models. Based on this established model, the dissipation equation describing the excess pore water pressure and the soil consolidation equation were derived for the electroosmosis treatment process. The derivation process considered both linear and nonlinear soil voltage distributions, wherein the anode was closed and the cathode was open. Finally, the analytical solution was analyzed and validated with model test cases in terms of the excess pore water pressure and average moisture content of the soil. The trend observed in the measured excess pore water pressure was more consistent with that of the theoretical results calculated assuming a nonlinear soil voltage distribution than that obtained using a linear distribution. In addition, the measured values of the average moisture content in the soil were closer to the values calculated under a nonlinear distribution of soil voltage than to those calculated under a linear distribution. These results further show that the established consolidation equation is reasonable when a nonlinear distribution of soil voltage is considered. The proposed consolidation equation can thus improve the application of electroosmotic methods in the future.


2016 ◽  
Vol 53 (9) ◽  
pp. 1460-1473 ◽  
Author(s):  
Dharma Wijewickreme ◽  
Achala Soysa

The cyclic shear response of soils is commonly examined using undrained (or constant-volume) laboratory element tests conducted using triaxial and direct simple shear (DSS) devices. The cyclic resistance ratio (CRR) from these tests is expressed in terms of the number of cycles of loading to reach unacceptable performance that is defined in terms of the attainment of a certain excess pore-water pressure and (or) strain level. While strain accumulation is generally commensurate with excess pore-water pressure, the definition of unacceptable performance in laboratory tests based purely on cyclic strain criteria is not robust. The shear stiffness is a more fundamental parameter in describing engineering performance than the excess pore-water pressure alone or shear strain alone; so far, no criterion has considered shear stiffness to determine CRR. Data from cyclic DSS tests indicate consistent differences inherent in the patterns between the stress–strain loops at initial and later stages of cyclic loading; instead of relatively “smooth” stress–strain loops in the initial parts of loading, nonsmooth changes in incremental stiffness showing “kinks” are notable in the stress–strain loops at large strains. The point of pattern change in a stress–strain loop provides a meaningful basis to determine the CRR (based on unacceptable performance) in cyclic shear tests.


2011 ◽  
Vol 261-263 ◽  
pp. 1534-1538
Author(s):  
Yu Guo Zhang ◽  
Ya Dong Bian ◽  
Kang He Xie

The consolidation of the composite ground under non-uniformly distributed initial excess pore water pressure along depth was studied in two models which respectively considering both the radial and vertical flows in granular column and the vertical flow only in granular column, and the corresponding analytical solutions of the two models were presented and compared with each other. It shows that the distribution of initial excess pore water pressure has obvious influence on the consolidation of the composite ground with single drainage boundary, and the rate of consolidation considering the radial-vertical flow in granular column is faster than that considering the vertical flow only in granular column.


2012 ◽  
Vol 193-194 ◽  
pp. 1010-1013
Author(s):  
Shu Qing Zhao

The construct to precast pile in thick clayey soil can cause the accumulation of excess pore water pressure. The high excess pore pressure can make soil, buildings and pipes surrounded have large deflection, even make them injured. Combining with actual projects, this paper presents an in-situ model test on the changes of excess pore water pressure caused by precast pile construct. It is found that the radius of influence range for single pile driven is about 15m,the excess pore water pressure can reach or even exceed the above effective soil pressure, and there are two relatively stable stages.


Sign in / Sign up

Export Citation Format

Share Document